These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25918496)

  • 21. Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction.
    Qian Y; Liu Z; Zhang H; Wu P; Cai C
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32875-32886. PubMed ID: 27934155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts.
    Zhong L; Jensen JO; Cleemann LN; Pan C; Li Q
    Sci Bull (Beijing); 2018 Jan; 63(1):24-30. PubMed ID: 36658914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fe-N bonding in a carbon nanotube-graphene complex for oxygen reduction: an XAS study.
    Zhou J; Duchesne PN; Hu Y; Wang J; Zhang P; Li Y; Regier T; Dai H
    Phys Chem Chem Phys; 2014 Aug; 16(30):15787-91. PubMed ID: 24963799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pt-free cathode catalysts prepared via multi-step pyrolysis of Fe phthalocyanine and phenolic resin for fuel cells.
    Wu L; Nabae Y; Moriya S; Matsubayashi K; Islam NM; Kuroki S; Kakimoto MA; Ozaki J; Miyata S
    Chem Commun (Camb); 2010 Sep; 46(34):6377-9. PubMed ID: 20697640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.
    Wu G; Zelenay P
    Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction.
    Zhang C; Hao R; Yin H; Liu F; Hou Y
    Nanoscale; 2012 Dec; 4(23):7326-9. PubMed ID: 23086132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting the Performance of Iron-Phthalocyanine as Cathode Electrocatalyst for Alkaline Polymer Fuel Cells Through Edge-Closed Conjugation.
    Zhang H; Zhang S; Wang Y; Si J; Chen Y; Zhuang L; Chen S
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28664-28671. PubMed ID: 30079727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron Phthalocyanine-Knitted Polymers as Electrocatalysts for the Oxygen Reduction Reaction.
    Valverde-González A; Guan LZ; Ferrer ML; Iglesias M; Maya EM
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32681-32688. PubMed ID: 32578975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional MoS
    Kwon IS; Kwak IH; Kim JY; Abbas HG; Debela TT; Seo J; Cho MK; Ahn JP; Park J; Kang HS
    Nanoscale; 2019 Aug; 11(30):14266-14275. PubMed ID: 31317997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic and structural properties at the interface between iron-phthalocyanine and Cu(110).
    Hu F; Mao H; Zhang H; Wu K; Cai Y; He P
    J Chem Phys; 2014 Mar; 140(9):094704. PubMed ID: 24606373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of nitrogen-doped carbon nanotubes with different morphologies from melamine-formaldehyde resin.
    Yao Y; Zhang B; Shi J; Yang Q
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7413-20. PubMed ID: 25790324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of the central Fe atom in the N4-macrocyclic structure for the enhancement of oxygen reduction reaction in a heteroatom nitrogen-carbon nanosphere.
    Kim DW; Li OL; Saito N
    Phys Chem Chem Phys; 2014 Jul; 16(28):14905-11. PubMed ID: 24931058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of transition metal on nitrogen retention and activity of iron-nitrogen-carbon oxygen reduction catalysts.
    Ganesan S; Leonard N; Barton SC
    Phys Chem Chem Phys; 2014 Mar; 16(10):4576-85. PubMed ID: 24457909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The electronic structure of iron phthalocyanine probed by photoelectron and x-ray absorption spectroscopies and density functional theory calculations.
    Ahlund J; Nilson K; Schiessling J; Kjeldgaard L; Berner S; Mårtensson N; Puglia C; Brena B; Nyberg M; Luo Y
    J Chem Phys; 2006 Jul; 125(3):34709. PubMed ID: 16863375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of CO
    Maya EM; Valverde-González A; Iglesias M
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33050266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of 4,4'-Dithiodipyridine Axially Coordinated to Iron(II) Phthalocyanine on Au(111) as a New Strategy for Oxygen Reduction Electrocatalysis.
    Herrera S; Tasca F; Williams FJ; Calvo EJ
    Chemphyschem; 2018 Jul; 19(13):1599-1604. PubMed ID: 29601134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomass based iron and nitrogen co-doped 3D porous carbon as an efficient oxygen reduction catalyst.
    Xu Z; Ma J; Shi M; Xie Y; Feng C
    J Colloid Interface Sci; 2018 Aug; 523():144-150. PubMed ID: 29614423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and Characterization of Iron Phthalocyanine Supported on Graphene Oxide and Catalysis of Adrenaline.
    Peng C; Tan SY; Li MT
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2195-2204. PubMed ID: 31492228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of Electrical Properties by a Composite FePc/CNT/C Cathode in a Bio-Electro-Fenton Microbial Fuel Cell System.
    Wang YT; Chiou CS; Chang SY; Chen HW
    J Nanosci Nanotechnol; 2020 May; 20(5):3252-3257. PubMed ID: 31635672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A General Approach to Preferential Formation of Active Fe-N
    Sa YJ; Seo DJ; Woo J; Lim JT; Cheon JY; Yang SY; Lee JM; Kang D; Shin TJ; Shin HS; Jeong HY; Kim CS; Kim MG; Kim TY; Joo SH
    J Am Chem Soc; 2016 Nov; 138(45):15046-15056. PubMed ID: 27750429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.