These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25918500)

  • 1. Duration of Purkinje cell complex spikes increases with their firing frequency.
    Warnaar P; Couto J; Negrello M; Junker M; Smilgin A; Ignashchenkova A; Giugliano M; Thier P; De Schutter E
    Front Cell Neurosci; 2015; 9():122. PubMed ID: 25918500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dynamic relationship between cerebellar Purkinje cell simple spikes and the spikelet number of complex spikes.
    Burroughs A; Wise AK; Xiao J; Houghton C; Tang T; Suh CY; Lang EJ; Apps R; Cerminara NL
    J Physiol; 2017 Jan; 595(1):283-299. PubMed ID: 27265808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.
    Tang T; Xiao J; Suh CY; Burroughs A; Cerminara NL; Jia L; Marshall SP; Wise AK; Apps R; Sugihara I; Lang EJ
    J Physiol; 2017 Aug; 595(15):5341-5357. PubMed ID: 28516455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol Modulates the Spontaneous Complex Spike Waveform of Cerebellar Purkinje Cells Recorded
    Zhang GJ; Wu MC; Shi JD; Xu YH; Chu CP; Cui SB; Qiu DL
    Front Cell Neurosci; 2017; 11():43. PubMed ID: 28293172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climbing Fibers Control Purkinje Cell Representations of Behavior.
    Streng ML; Popa LS; Ebner TJ
    J Neurosci; 2017 Feb; 37(8):1997-2009. PubMed ID: 28077726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Purkinje cell complex spike waveform by synchrony levels in the olivocerebellar system.
    Lang EJ; Tang T; Suh CY; Xiao J; Kotsurovskyy Y; Blenkinsop TA; Marshall SP; Sugihara I
    Front Syst Neurosci; 2014; 8():210. PubMed ID: 25400556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal propagation of simple and complex spikes in cerebellar Purkinje neurons.
    Khaliq ZM; Raman IM
    J Neurosci; 2005 Jan; 25(2):454-63. PubMed ID: 15647489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes.
    Kobayashi Y; Kawano K; Takemura A; Inoue Y; Kitama T; Gomi H; Kawato M
    J Neurophysiol; 1998 Aug; 80(2):832-48. PubMed ID: 9705472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input.
    Sato Y; Miura A; Fushiki H; Kawasaki T
    J Neurophysiol; 1992 Dec; 68(6):2051-62. PubMed ID: 1491256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-methyl-D-Aspartate Receptors Contribute to Complex Spike Signaling in Cerebellar Purkinje Cells: An In vivo Study in Mice.
    Liu H; Lan Y; Bing YH; Chu CP; Qiu DL
    Front Cell Neurosci; 2016; 10():172. PubMed ID: 27445699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discharge patterns of Purkinje cells activated through the climbing fiber system by stimulation of somatic and visceral afferents.
    Rubia FJ; Hennemann HE
    Pflugers Arch; 1978 Jul; 375(2):125-9. PubMed ID: 567782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Spontaneous Climbing Fiber Discharge-Evoked Pauses and Output Modulation of Cerebellar Purkinje Cell in Mice.
    Jin XH; Wang HW; Zhang XY; Chu CP; Jin YZ; Cui SB; Qiu DL
    Front Cell Neurosci; 2017; 11():247. PubMed ID: 28878623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells.
    Zang Y; Dieudonné S; De Schutter E
    Cell Rep; 2018 Aug; 24(6):1536-1549. PubMed ID: 30089264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of harmaline of the complex spike waveform and depression time in cerebellar Purkinje cell discharge in rat postnatal ontogenesis].
    Karelina TV; Grigor'ian RA
    Zh Evol Biokhim Fiziol; 2010; 46(3):218-24. PubMed ID: 20583582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli.
    Dykstra S; Engbers JD; Bartoletti TM; Turner RW
    J Physiol; 2016 Feb; 594(4):985-1003. PubMed ID: 26662168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex.
    Raghavan RT; Lisberger SG
    J Neurophysiol; 2017 Aug; 118(2):986-1001. PubMed ID: 28515286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase relations of Purkinje cells in the rabbit flocculus during compensatory eye movements.
    De Zeeuw CI; Wylie DR; Stahl JS; Simpson JI
    J Neurophysiol; 1995 Nov; 74(5):2051-64. PubMed ID: 8592196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic modulation of mossy fiber system throughput by inferior olive synchrony: a multielectrode study of cerebellar cortex activated by motor cortex.
    Schwarz C; Welsh JP
    J Neurophysiol; 2001 Nov; 86(5):2489-504. PubMed ID: 11698537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of cerebellar unit discharge patterns in the decerebrate cat during passive movements.
    Kolb FP; Rubia FJ; Bauswein E
    Exp Brain Res; 1987; 68(2):219-33. PubMed ID: 3691698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.