These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25918743)

  • 1. On a modified form of navier-stokes equations for three-dimensional flows.
    Venetis J
    ScientificWorldJournal; 2015; 2015():692494. PubMed ID: 25918743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical equations for the vector potential and the velocity potential in incompressible irrotational Euler flows: a refined Bernoulli theorem.
    Ohkitani K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033010. PubMed ID: 26465559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational principle for the Navier-Stokes equations.
    Kerswell RR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5482-94. PubMed ID: 11969527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.
    Thamareerat N; Luadsong A; Aschariyaphotha N
    Springerplus; 2016; 5():417. PubMed ID: 27099822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling.
    Ohkitani K
    Phys Rev E; 2020 Jan; 101(1-1):013104. PubMed ID: 32069662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified lattice Boltzmann model for axisymmetric flows.
    Reis T; Phillips TN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056703. PubMed ID: 17677194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetically reduced local Navier-Stokes equations for simulation of incompressible viscous flows.
    Borok S; Ansumali S; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066704. PubMed ID: 18233940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuing invariant solutions towards the turbulent flow.
    Parente E; Farano M; Robinet JC; De Palma P; Cherubini S
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210031. PubMed ID: 35527631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.
    Gibbon JD; Pal N; Gupta A; Pandit R
    Phys Rev E; 2016 Dec; 94(6-1):063103. PubMed ID: 28085309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-similarity in incompressible Navier-Stokes equations.
    Ercan A; Kavvas ML
    Chaos; 2015 Dec; 25(12):123126. PubMed ID: 26723165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-conforming constraints-oriented numerical method.
    Ahusborde E; Gruber R; Azaiez M; Sawley ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056704. PubMed ID: 17677195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.
    Yang X; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations.
    Kim TY; Cassiani M; Albertson JD; Dolbow JE; Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045307. PubMed ID: 19518292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preconditioned lattice-Boltzmann method for steady flows.
    Guo Z; Zhao TS; Shi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066706. PubMed ID: 15697552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergence-free tangential finite element methods for incompressible flows on surfaces.
    Lederer PL; Lehrenfeld C; Schöberl J
    Int J Numer Methods Eng; 2020 Jun; 121(11):2503-2533. PubMed ID: 34853485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-attenuation of extreme events in Navier-Stokes turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dimensional representations of exact coherent states of the Navier-Stokes equations from the resolvent model of wall turbulence.
    Sharma AS; Moarref R; McKeon BJ; Park JS; Graham MD; Willis AP
    Phys Rev E; 2016 Feb; 93(2):021102. PubMed ID: 26986280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.