BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 25918880)

  • 1. Revealing the underlying mechanism of diabetic nephropathy viewed by microarray analysis.
    Qu W; Han C; Li M; Zhang J; Li L
    Exp Clin Endocrinol Diabetes; 2015 Jun; 123(6):353-9. PubMed ID: 25918880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of biological targets of therapeutic intervention for diabetic nephropathy with bioinformatics approach.
    Wu T; Li Q; Wu T; Liu HY
    Exp Clin Endocrinol Diabetes; 2014 Nov; 122(10):587-91. PubMed ID: 25003364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatic analysis of specific genes in diabetic nephropathy.
    Fu F; Wei X; Liu J; Mi N
    Ren Fail; 2015 Aug; 37(7):1219-24. PubMed ID: 26156684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crucial genes associated with diabetic nephropathy explored by microarray analysis.
    Wang Z; Wang Z; Zhou Z; Ren Y
    BMC Nephrol; 2016 Sep; 17(1):128. PubMed ID: 27613243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of mechanisms of mesenchymal stem cells for treatment of diabetic nephropathy via construction of a miRNA-TF-mRNA network.
    Yang H; Zhang X; Xin G
    Ren Fail; 2018 Nov; 40(1):136-145. PubMed ID: 29532746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening of feature genes of the renal cell carcinoma with DNA microarray.
    Feng JY; Diao XW; Fan MQ; Wang PX; Xiao Y; Zhong X; Wu RH; Huang CB
    Eur Rev Med Pharmacol Sci; 2013 Nov; 17(22):2994-3001. PubMed ID: 24302177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key Genes and Signaling Pathways Contribute to the Pathogensis of Diabetic Nephropathy.
    Yang H; Lian D; Zhang X; Li H; Xin G
    Iran J Kidney Dis; 2019 Mar; 13(2):87-97. PubMed ID: 30988245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In search of key genes associated with endometriosis using bioinformatics approach.
    Liu F; Lv X; Yu H; Xu P; Ma R; Zou K
    Eur J Obstet Gynecol Reprod Biol; 2015 Nov; 194():119-24. PubMed ID: 26366788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of differentially expressed genes regulated by molecular signature in breast cancer-associated fibroblasts by bioinformatics analysis.
    Vastrad B; Vastrad C; Tengli A; Iliger S
    Arch Gynecol Obstet; 2018 Jan; 297(1):161-183. PubMed ID: 29063236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays.
    Shen H; Wang W; Ni B; Zou Q; Lu H; Wang Z
    Int J Mol Med; 2018 Jul; 42(1):21-30. PubMed ID: 29620143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis.
    Hu Y; Yu Y; Dong H; Jiang W
    PeerJ; 2023; 11():e15437. PubMed ID: 37250717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the Mechanism of Complement System in Diabetic Nephropathy via Bioinformatics Analysis.
    Xu B; Wang L; Zhan H; Zhao L; Wang Y; Shen M; Xu K; Li L; Luo X; Zhou S; Tang A; Liu G; Song L; Li Y
    J Diabetes Res; 2021; 2021():5546199. PubMed ID: 34124269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis.
    Yang F; Cui Z; Deng H; Wang Y; Chen Y; Li H; Yuan L
    Medicine (Baltimore); 2019 Jul; 98(27):e16225. PubMed ID: 31277135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm.
    Gholaminejad A; Fathalipour M; Roointan A
    BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the protein-protein interaction networks of differentially expressed genes in pulmonary embolism.
    Wang H; Wang C; Zhang L; Lu Y; Duan Q; Gong Z; Liang A; Song H; Wang L
    Mol Med Rep; 2015 Apr; 11(4):2527-33. PubMed ID: 25434468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific expression network analysis of diabetic nephropathy kidney tissue revealed key methylated sites.
    Wang YZ; Xu WW; Zhu DY; Zhang N; Wang YL; Ding M; Xie XM; Sun LL; Wang XX
    J Cell Physiol; 2018 Oct; 233(10):7139-7147. PubMed ID: 29737531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of key genes and pathways in renal cell carcinoma through expression profiling data.
    Liu X; Wang J; Sun G
    Kidney Blood Press Res; 2015; 40(3):288-97. PubMed ID: 26043775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of candidate target genes of pituitary adenomas based on the DNA microarray.
    Zhou W; Ma CX; Xing YZ; Yan ZY
    Mol Med Rep; 2016 Mar; 13(3):2182-6. PubMed ID: 26782791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.