BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25919230)

  • 1. Molecular cytotoxicity mechanisms of allyl alcohol (acrolein) in budding yeast.
    Golla U; Bandi G; Tomar RS
    Chem Res Toxicol; 2015 Jun; 28(6):1246-64. PubMed ID: 25919230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1.
    Kwolek-Mirek M; Zadrąg-Tęcza R; Bednarska S; Bartosz G
    Cell Biochem Biophys; 2015 Apr; 71(3):1525-36. PubMed ID: 25395196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae.
    Kwolek-Mirek M; Bednarska S; Bartosz G; Biliński T
    Cell Biol Toxicol; 2009 Aug; 25(4):363-78. PubMed ID: 18563599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Transcriptomics and Chemical-Genetics Reveal Molecular Mode of Action of Valproic acid, an Anticancer Molecule using Budding Yeast Model.
    Golla U; Joseph D; Tomar RS
    Sci Rep; 2016 Oct; 6():35322. PubMed ID: 27734932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined effects of co-exposure to formaldehyde and acrolein mixtures on cytotoxicity and genotoxicity in vitro.
    Zhang S; Chen H; Wang A; Liu Y; Hou H; Hu Q
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25306-25314. PubMed ID: 29946839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrolein mutagenicity in the V79 assay.
    Smith RA; Cohen SM; Lawson TA
    Carcinogenesis; 1990 Mar; 11(3):497-8. PubMed ID: 2311195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of di-cysteine acrolein adduct decreases cytotoxicity of acrolein by ROS alleviation and apoptosis intervention.
    Yin Z; Jiang K; Shi L; Fei J; Zheng J; Ou S; Ou J
    J Hazard Mater; 2020 Apr; 387():121686. PubMed ID: 31780296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrolein scavengers: reactivity, mechanism and impact on health.
    Zhu Q; Sun Z; Jiang Y; Chen F; Wang M
    Mol Nutr Food Res; 2011 Sep; 55(9):1375-90. PubMed ID: 21714129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amifostine and glutathione prevent ifosfamide- and acrolein-induced hemorrhagic cystitis.
    Batista CK; Mota JM; Souza ML; Leitão BT; Souza MH; Brito GA; Cunha FQ; Ribeiro RA
    Cancer Chemother Pharmacol; 2007 Jan; 59(1):71-7. PubMed ID: 16708234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acrolein-sequestering ability of endogenous dipeptides: characterization of carnosine and homocarnosine/acrolein adducts by electrospray ionization tandem mass spectrometry.
    Carini M; Aldini G; Beretta G; Arlandini E; Facino RM
    J Mass Spectrom; 2003 Sep; 38(9):996-1006. PubMed ID: 14505328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium toxicity toward yeast as assessed by microarray analysis and deletion mutant library screen: a role for DNA repair.
    Mániková D; Vlasáková D; Letavayová L; Klobučniková V; Griač P; Chovanec M
    Chem Res Toxicol; 2012 Aug; 25(8):1598-608. PubMed ID: 22747191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NTP Technical Report on the comparative toxicity studies of allyl acetate (CAS No. 591-87-7), allyl alcohol (CAS No. 107-18-6) and acrolein (CAS No. 107-02-8) administered by gavage to F344/N rats and B6C3F1 mice.
    Irwin RD
    Toxic Rep Ser; 2006 Jul; (48):1-73, A1-H10. PubMed ID: 17160105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caffeine potentiation of allyl alcohol-induced hepatotoxicity. II. In vitro study.
    Karas M; Chakrabarti SK
    J Environ Pathol Toxicol Oncol; 2001; 20(2):155-64. PubMed ID: 11394714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of Yap1 towards Saccharomyces cerevisiae adaptation to arsenic-mediated oxidative stress.
    Menezes RA; Amaral C; Batista-Nascimento L; Santos C; Ferreira RB; Devaux F; Eleutherio EC; Rodrigues-Pousada C
    Biochem J; 2008 Sep; 414(2):301-11. PubMed ID: 18439143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allylamine toxicity in embryonic myocardial myocyte reaggregate cultures: The role of extracellular metabolism by benzylamine oxidase.
    Earl LK; Kesingland K; Davis KP; Brocklehurst SR; Jones HB
    Toxicol In Vitro; 1992 Sep; 6(5):405-16. PubMed ID: 20732139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of CDDO-imidazolide-mediated cytoprotection against acrolein-induced neurocytotoxicity in SH-SY5Y cells and primary human astrocytes.
    Speen A; Jones C; Patel R; Shah H; Nallasamy P; Brooke EA; Zhu H; Li YR; Jia Z
    Toxicol Lett; 2015 Oct; 238(1):32-42. PubMed ID: 26200598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae.
    Costa V; Quintanilha A; Moradas-Ferreira P
    IUBMB Life; 2007; 59(4-5):293-8. PubMed ID: 17505968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of activity of semicarbazide-sensitive aminooxidases and cellular glutathione on the cytotoxic effect of allylamine, acrolein, and formaldehyde in human cultured endothelial cells].
    Pino R; Lyles GA
    Vopr Med Khim; 1997; 43(6):537-47. PubMed ID: 9503571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide mancozeb in yeast, as suggested by a chemogenomic approach.
    Dias PJ; Teixeira MC; Telo JP; Sá-Correia I
    OMICS; 2010 Apr; 14(2):211-27. PubMed ID: 20337531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.