BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25919368)

  • 1. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level.
    Rose JC; Paulus S; Kuhlmann H
    Sensors (Basel); 2015 Apr; 15(5):9651-65. PubMed ID: 25919368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel mesh processing based technique for 3D plant analysis.
    Paproki A; Sirault X; Berry S; Furbank R; Fripp J
    BMC Plant Biol; 2012 May; 12():63. PubMed ID: 22553969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.
    Paulus S; Dupuis J; Mahlein AK; Kuhlmann H
    BMC Bioinformatics; 2013 Jul; 14():238. PubMed ID: 23890277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-cost 3D systems: suitable tools for plant phenotyping.
    Paulus S; Behmann J; Mahlein AK; Plümer L; Kuhlmann H
    Sensors (Basel); 2014 Feb; 14(2):3001-18. PubMed ID: 24534920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structured Light-Based 3D Reconstruction System for Plants.
    Nguyen TT; Slaughter DC; Max N; Maloof JN; Sinha N
    Sensors (Basel); 2015 Jul; 15(8):18587-612. PubMed ID: 26230701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pheno4D: A spatio-temporal dataset of maize and tomato plant point clouds for phenotyping and advanced plant analysis.
    Schunck D; Magistri F; Rosu RA; Cornelißen A; Chebrolu N; Paulus S; Léon J; Behnke S; Stachniss C; Kuhlmann H; Klingbeil L
    PLoS One; 2021; 16(8):e0256340. PubMed ID: 34407122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Approaches to Improve Three Basic Plant Phenotyping Tasks Using Three-Dimensional Point Clouds.
    Ziamtsov I; Navlakha S
    Plant Physiol; 2019 Dec; 181(4):1425-1440. PubMed ID: 31591152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Modeling of Weed Plants Using Low-Cost Photogrammetry.
    Andújar D; Calle M; Fernández-Quintanilla C; Ribeiro Á; Dorado J
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Registration of spatio-temporal point clouds of plants for phenotyping.
    Chebrolu N; Magistri F; Läbe T; Stachniss C
    PLoS One; 2021; 16(2):e0247243. PubMed ID: 33630896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.
    Duan T; Chapman SC; Holland E; Rebetzke GJ; Guo Y; Zheng B
    J Exp Bot; 2016 Aug; 67(15):4523-34. PubMed ID: 27312669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System.
    Zhang Y; Teng P; Shimizu Y; Hosoi F; Omasa K
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27314348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction.
    Wu S; Wen W; Gou W; Lu X; Zhang W; Zheng C; Xiang Z; Chen L; Guo X
    Front Plant Sci; 2022; 13():897746. PubMed ID: 36003825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive Determination of Nitrogen, Phosphorus and Potassium Contents in Greenhouse Tomato Plants Based on Multispectral Three-Dimensional Imaging.
    Sun G; Ding Y; Wang X; Lu W; Sun Y; Yu H
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant Phenotyping: An Active Vision Cell for Three-Dimensional Plant Shoot Reconstruction.
    Gibbs JA; Pound M; French AP; Wells DM; Murchie E; Pridmore T
    Plant Physiol; 2018 Oct; 178(2):524-534. PubMed ID: 30097468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A High-Throughput, Field-Based Phenotyping Technology for Tall Biomass Crops.
    Salas Fernandez MG; Bao Y; Tang L; Schnable PS
    Plant Physiol; 2017 Aug; 174(4):2008-2022. PubMed ID: 28620124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Cost Three-Dimensional Modeling of Crop Plants.
    Martinez-Guanter J; Ribeiro Á; Peteinatos GG; Pérez-Ruiz M; Gerhards R; Bengochea-Guevara JM; Machleb J; Andújar D
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performances Evaluation of a Low-Cost Platform for High-Resolution Plant Phenotyping.
    Rossi R; Leolini C; Costafreda-Aumedes S; Leolini L; Bindi M; Zaldei A; Moriondo M
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32498361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize Shoots Using Multiview Stereo 3D Reconstruction.
    Wu S; Wen W; Wang Y; Fan J; Wang C; Gou W; Guo X
    Plant Phenomics; 2020; 2020():1848437. PubMed ID: 33313542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.