BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25919368)

  • 21. A novel way to validate UAS-based high-throughput phenotyping protocols using in silico experiments for plant breeding purposes.
    Galli G; Sabadin F; Costa-Neto GMF; Fritsche-Neto R
    Theor Appl Genet; 2021 Feb; 134(2):715-730. PubMed ID: 33216217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measuring crops in 3D: using geometry for plant phenotyping.
    Paulus S
    Plant Methods; 2019; 15():103. PubMed ID: 31497064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3-D modeling of tomato canopies using a high-resolution portable scanning lidar for extracting structural information.
    Hosoi F; Nakabayashi K; Omasa K
    Sensors (Basel); 2011; 11(2):2166-2174. PubMed ID: 22319403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A proposal of a new automated method for SfM/MVS 3D reconstruction through comparisons of 3D data by SfM/MVS and handheld laser scanners.
    Kaneda A; Nakagawa T; Tamura K; Noshita K; Nakao H
    PLoS One; 2022; 17(7):e0270660. PubMed ID: 35857749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.
    Wahabzada M; Paulus S; Kersting K; Mahlein AK
    BMC Bioinformatics; 2015 Aug; 16():248. PubMed ID: 26253564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extraction of soybean plant trait parameters based on SfM-MVS algorithm combined with GRNN.
    He W; Ye Z; Li M; Yan Y; Lu W; Xing G
    Front Plant Sci; 2023; 14():1181322. PubMed ID: 37560031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum.
    Thapa S; Zhu F; Walia H; Yu H; Ge Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves.
    Verboven P; Herremans E; Helfen L; Ho QT; Abera M; Baumbach T; Wevers M; Nicolaï BM
    Plant J; 2015 Jan; 81(1):169-82. PubMed ID: 25319143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated analysis of barley organs using 3D laser scanning: an approach for high throughput phenotyping.
    Paulus S; Dupuis J; Riedel S; Kuhlmann H
    Sensors (Basel); 2014 Jul; 14(7):12670-86. PubMed ID: 25029283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Monitoring of Plant Structural Parameters and Chlorophyll Distribution.
    Itakura K; Kamakura I; Hosoi F
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction method and optimum range of camera-shooting angle for 3D plant modeling using a multi-camera photography system.
    Lu X; Ono E; Lu S; Zhang Y; Teng P; Aono M; Shimizu Y; Hosoi F; Omasa K
    Plant Methods; 2020; 16():118. PubMed ID: 32874194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simultaneous beta and coincidence-gamma imaging system for plant leaves.
    Ranjbar H; Wen J; Mathews AJ; Komarov S; Wang Q; Li K; O'Sullivan JA; Tai YC
    Phys Med Biol; 2016 May; 61(9):3572-95. PubMed ID: 27065022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EndoAbS dataset: Endoscopic abdominal stereo image dataset for benchmarking 3D stereo reconstruction algorithms.
    Penza V; Ciullo AS; Moccia S; Mattos LS; De Momi E
    Int J Med Robot; 2018 Oct; 14(5):e1926. PubMed ID: 29968295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D reconstruction and restoration monitoring of sculptural artworks by a multi-sensor framework.
    Barone S; Paoli A; Razionale AV
    Sensors (Basel); 2012 Dec; 12(12):16785-801. PubMed ID: 23223079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants.
    Minervini M; Giuffrida MV; Perata P; Tsaftaris SA
    Plant J; 2017 Apr; 90(1):204-216. PubMed ID: 28066963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring the Growth and Yield of Fruit Vegetables in a Greenhouse Using a Three-Dimensional Scanner.
    Ohashi Y; Ishigami Y; Goto E
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32942632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated recovery of three-dimensional models of plant shoots from multiple color images.
    Pound MP; French AP; Murchie EH; Pridmore TP
    Plant Physiol; 2014 Dec; 166(4):1688-98. PubMed ID: 25332504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth.
    Bernotas G; Scorza LCT; Hansen MF; Hales IJ; Halliday KJ; Smith LN; Smith ML; McCormick AJ
    Gigascience; 2019 May; 8(5):. PubMed ID: 31127811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic Leaf Segmentation for Estimating Leaf Area and Leaf Inclination Angle in 3D Plant Images.
    Itakura K; Hosoi F
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.