These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25919417)

  • 1. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish.
    Eichmiller JJ; Miller LM; Sorensen PW
    Mol Ecol Resour; 2016 Jan; 16(1):56-68. PubMed ID: 25919417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between the distribution of common carp and their environmental DNA in a small lake.
    Eichmiller JJ; Bajer PG; Sorensen PW
    PLoS One; 2014; 9(11):e112611. PubMed ID: 25383965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys.
    Doi H; Uchii K; Takahara T; Matsuhashi S; Yamanaka H; Minamoto T
    PLoS One; 2015; 10(3):e0122763. PubMed ID: 25799582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio.
    Minamoto T; Uchii K; Takahara T; Kitayoshi T; Tsuji S; Yamanaka H; Doi H
    Mol Ecol Resour; 2017 Mar; 17(2):324-333. PubMed ID: 27487846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).
    Turner CR; Miller DJ; Coyne KJ; Corush J
    PLoS One; 2014; 9(12):e114329. PubMed ID: 25474207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Protocol optimization of eDNA analysis workflow for detecting Hucho bleekeri.].
    Jiang W; Wang QJ; Deng J; Zhao H; Kong F; Zhang HX
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2372-2378. PubMed ID: 29737148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of filtering methods, filter processing and DNA extraction kits for detection of mycobacteria in water.
    Kaevska M; Slana I
    Ann Agric Environ Med; 2015; 22(3):429-32. PubMed ID: 26403108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of fish biomass using environmental DNA.
    Takahara T; Minamoto T; Yamanaka H; Doi H; Kawabata Z
    PLoS One; 2012; 7(4):e35868. PubMed ID: 22563411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of filtration method on the efficiency of environmental DNA capture and quantification via metabarcoding.
    Li J; Lawson Handley LJ; Read DS; Hänfling B
    Mol Ecol Resour; 2018 May; ():. PubMed ID: 29766663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Temperature and Trophic State on Degradation of Environmental DNA in Lake Water.
    Eichmiller JJ; Best SE; Sorensen PW
    Environ Sci Technol; 2016 Feb; 50(4):1859-67. PubMed ID: 26771292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial genome sequencing and development of genetic markers for the detection of DNA of invasive bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) in environmental water samples from the United States.
    Farrington HL; Edwards CE; Guan X; Carr MR; Baerwaldt K; Lance RF
    PLoS One; 2015; 10(2):e0117803. PubMed ID: 25706532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating environmental DNA detection of a rare fish in turbid water using field and experimental approaches.
    Holmes AE; Baerwald MR; Rodzen J; Schreier BM; Mahardja B; Finger AJ
    PeerJ; 2024; 12():e16453. PubMed ID: 38188170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diazinon negatively affects the integrity of environmental DNA stability: a case study with common carp (Cyprinus carpio).
    Pourmoghadam MN; Poorbagher H; de Oliveira Fernandes JM; Jafari O
    Environ Monit Assess; 2019 Oct; 191(11):672. PubMed ID: 31650301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental conditions influence eDNA persistence in aquatic systems.
    Barnes MA; Turner CR; Jerde CL; Renshaw MA; Chadderton WL; Lodge DM
    Environ Sci Technol; 2014; 48(3):1819-27. PubMed ID: 24422450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Evaluation of Common Materials as Passive Samplers of Environmental DNA.
    Chen X; Kong Y; Zhang S; Zhao J; Li S; Yao M
    Environ Sci Technol; 2022 Aug; 56(15):10798-10807. PubMed ID: 35856738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing an eDNA protocol for estuarine environments: Balancing sensitivity, cost and time.
    Sanches TM; Schreier AD
    PLoS One; 2020; 15(5):e0233522. PubMed ID: 32437479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system.
    Song JW; Small MJ; Casman EA
    Sci Total Environ; 2017 Dec; 605-606():713-720. PubMed ID: 28675881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimised eDNA protocol for detecting fish in lentic and lotic freshwaters using a small water volume.
    Muha TP; Robinson CV; Garcia de Leaniz C; Consuegra S
    PLoS One; 2019; 14(7):e0219218. PubMed ID: 31314760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the efficiency of open and enclosed filtration systems in environmental DNA quantification for fish and jellyfish.
    Takahashi S; Sakata MK; Minamoto T; Masuda R
    PLoS One; 2020; 15(4):e0231718. PubMed ID: 32310994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data.
    Merkes CM; McCalla SG; Jensen NR; Gaikowski MP; Amberg JJ
    PLoS One; 2014; 9(11):e113346. PubMed ID: 25402206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.