These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 25919591)
1. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. Tan H; Xie Q; Xiang X; Li J; Zheng S; Xu X; Guo H; Ye W PLoS One; 2015; 10(4):e0124794. PubMed ID: 25919591 [TBL] [Abstract][Full Text] [Related]
2. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related]
3. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
4. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Hua W; Li RJ; Zhan GM; Liu J; Li J; Wang XF; Liu GH; Wang HZ Plant J; 2012 Feb; 69(3):432-44. PubMed ID: 21954986 [TBL] [Abstract][Full Text] [Related]
5. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. Wu XL; Liu ZH; Hu ZH; Huang RZ J Integr Plant Biol; 2014 Jun; 56(6):582-93. PubMed ID: 24393360 [TBL] [Abstract][Full Text] [Related]
6. Effects of specific organs on seed oil accumulation in Brassica napus L. Liu J; Hua W; Yang H; Guo T; Sun X; Wang X; Liu G; Wang H Plant Sci; 2014 Oct; 227():60-8. PubMed ID: 25219307 [TBL] [Abstract][Full Text] [Related]
7. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758 [TBL] [Abstract][Full Text] [Related]
8. Decreased seed oil production in FUSCA3 Brassica napus mutant plants. Elahi N; Duncan RW; Stasolla C Plant Physiol Biochem; 2015 Nov; 96():222-30. PubMed ID: 26302483 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related]
10. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Tan H; Yang X; Zhang F; Zheng X; Qu C; Mu J; Fu F; Li J; Guan R; Zhang H; Wang G; Zuo J Plant Physiol; 2011 Jul; 156(3):1577-88. PubMed ID: 21562329 [TBL] [Abstract][Full Text] [Related]
11. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Elhiti M; Yang C; Chan A; Durnin DC; Belmonte MF; Ayele BT; Tahir M; Stasolla C J Exp Bot; 2012 Jul; 63(12):4447-61. PubMed ID: 22563121 [TBL] [Abstract][Full Text] [Related]
12. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. Li RJ; Wang HZ; Mao H; Lu YT; Hua W Planta; 2006 Sep; 224(4):952-62. PubMed ID: 16575595 [TBL] [Abstract][Full Text] [Related]
13. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Vigeolas H; Waldeck P; Zank T; Geigenberger P Plant Biotechnol J; 2007 May; 5(3):431-41. PubMed ID: 17430545 [TBL] [Abstract][Full Text] [Related]
14. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1. Elahi N; Duncan RW; Stasolla C Plant Physiol Biochem; 2016 Mar; 100():52-63. PubMed ID: 26773545 [TBL] [Abstract][Full Text] [Related]
15. Nutritional functions of the funiculus in Brassica napus seed maturation revealed by transcriptome and dynamic metabolite profile analyses. Tan H; Xiang X; Tang J; Wang X Plant Mol Biol; 2016 Nov; 92(4-5):539-553. PubMed ID: 27539000 [TBL] [Abstract][Full Text] [Related]
16. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus. Wei W; Li G; Jiang X; Wang Y; Ma Z; Niu Z; Wang Z; Geng X PLoS One; 2018; 13(10):e0204998. PubMed ID: 30332454 [TBL] [Abstract][Full Text] [Related]
17. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439 [TBL] [Abstract][Full Text] [Related]
18. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Lu S; Sturtevant D; Aziz M; Jin C; Li Q; Chapman KD; Guo L Plant J; 2018 Jun; 94(6):915-932. PubMed ID: 29752761 [TBL] [Abstract][Full Text] [Related]
19. Light induces gene expression to enhance the synthesis of storage reserves in Brassica napus L. embryos. Tan H; Qi X; Li Y; Wang X; Zhou J; Liu X; Shi X; Ye W; Xiang X Plant Mol Biol; 2020 Jul; 103(4-5):457-471. PubMed ID: 32274640 [TBL] [Abstract][Full Text] [Related]
20. Hormonal regulation of oil accumulation in Brassica seeds: metabolism and biological activity of ABA, 7'-, 8'- and 9'-hydroxy ABA in microspore derived embryos of B. napus. Jadhav AS; Taylor DC; Giblin M; Ferrie AM; Ambrose SJ; Ross AR; Nelson KM; Irina Zaharia L; Sharma N; Anderson M; Fobert PR; Abrams SR Phytochemistry; 2008 Nov; 69(15):2678-88. PubMed ID: 18823922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]