These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 25919648)
41. Using devitalized moss for active biomonitoring of water pollution. Debén S; Fernández JA; Carballeira A; Aboal JR Environ Pollut; 2016 Mar; 210():315-22. PubMed ID: 26803787 [TBL] [Abstract][Full Text] [Related]
42. Critical remarks on the use of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution. Reimann C; Niskavaara H; Kashulina G; Filzmoser P; Boyd R; Volden T; Tomilina O; Bogatyrev I Environ Pollut; 2001; 113(1):41-57. PubMed ID: 11351761 [TBL] [Abstract][Full Text] [Related]
43. Effects of heavy metals on the nitrogen metabolism of the aquatic moss Fontinalis antipyretica L. ex Hedw. A 15N tracer study. Sutter K; Jung K; Krauss GJ Environ Sci Pollut Res Int; 2002; 9(6):417-21. PubMed ID: 12515351 [TBL] [Abstract][Full Text] [Related]
44. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution. Kosior G; Samecka-Cymerman A; Kolon K; Kempers AJ Chemosphere; 2010 Sep; 81(3):321-6. PubMed ID: 20696462 [TBL] [Abstract][Full Text] [Related]
45. [Heavy Metal Contamination in Farmland Soils at an E-waste Disassembling Site in Qingyuan, Guangdong, South China]. Zhang JL; Ding JF; Lu GN; Dang Z; Yi XY Huan Jing Ke Xue; 2015 Jul; 36(7):2633-40. PubMed ID: 26489335 [TBL] [Abstract][Full Text] [Related]
46. [Leaf cell damage and changes in photosynthetic pigment contents of three moss species under cadmium stress]. Gong SJ; Ma TW; Li J; Liu YD Ying Yong Sheng Tai Xue Bao; 2010 Oct; 21(10):2671-6. PubMed ID: 21328959 [TBL] [Abstract][Full Text] [Related]
47. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718 [TBL] [Abstract][Full Text] [Related]
48. [Mosses as bioindicators of heavy metal pollution of the urban environment]. Lepneva OM; Sluka ZA; Abramova LI; Obukhov AI Nauchnye Doki Vyss Shkoly Biol Nauki; 1987; (8):87-91. PubMed ID: 3663773 [TBL] [Abstract][Full Text] [Related]
49. Distribution, migration and potential risk of heavy metals in the Shima River catchment area, South China. Gao L; Chen J; Tang C; Ke Z; Wang J; Shimizu Y; Zhu A Environ Sci Process Impacts; 2015 Oct; 17(10):1769-82. PubMed ID: 26308469 [TBL] [Abstract][Full Text] [Related]
50. A new method for determination of heavy metal adsorption parameters in compacted clay by batch tests. Shu S; Zhu W; Xu H; Fan X; Wu S; Shi J; Song J Ecotoxicol Environ Saf; 2019 Oct; 181():114-120. PubMed ID: 31176245 [TBL] [Abstract][Full Text] [Related]
51. Biomonitoring freshwater FISH farms by measuring nitrogen concentrations and the δ Carballeira C; Carballeira A; Aboal JR; Fernández JA Environ Pollut; 2019 Feb; 245():1014-1021. PubMed ID: 30682735 [TBL] [Abstract][Full Text] [Related]
52. Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Pandey LK; Bergey EA Sci Total Environ; 2016 Apr; 550():372-381. PubMed ID: 26827142 [TBL] [Abstract][Full Text] [Related]
53. A simple and easy method for the monitoring of environmental pollutants using oligotrophic bacteria. Tada Y; Kobata T; Nakaoka C Lett Appl Microbiol; 2001 Jan; 32(1):12-5. PubMed ID: 11169034 [TBL] [Abstract][Full Text] [Related]
54. A procedure to purify and culture a clonal strain of the aquatic moss Fontinalis antipyretica for use as a bioindicator of heavy metals. Rausch de Traubenberg C; Ah-Peng C Arch Environ Contam Toxicol; 2004 Apr; 46(3):289-95. PubMed ID: 15195799 [TBL] [Abstract][Full Text] [Related]
55. Use of macroalgae as biological indicators of heavy metal pollution in Thermaikos Gulf, Greece. Fytianos K; Evgenidou E; Zachariadis G Bull Environ Contam Toxicol; 1999 May; 62(5):630-7. PubMed ID: 10227844 [No Abstract] [Full Text] [Related]
56. Regulation of gemma formation in the copper moss Scopelophila cataractae by environmental copper concentrations. Nomura T; Hasezawa S J Plant Res; 2011 Sep; 124(5):631-8. PubMed ID: 21082328 [TBL] [Abstract][Full Text] [Related]
57. Heavy Metal Accumulation and Copper Localization in Scopelophila cataractae in Thailand. Printarakul N; Meeinkuirt W Bull Environ Contam Toxicol; 2021 Sep; 107(3):530-536. PubMed ID: 33928411 [TBL] [Abstract][Full Text] [Related]
58. Intracellular and extracellular ammonium (NH4(+)) uptake and its toxic effects on the aquatic biomonitor Fontinalis antipyretica. Vieira AR; Gonzalez C; Martins-Loução MA; Branquinho C Ecotoxicology; 2009 Nov; 18(8):1087-94. PubMed ID: 19609671 [TBL] [Abstract][Full Text] [Related]
59. Influence of current velocity on cadmium accumulation by an aquatic moss and the consequences for its use as a biomonitor. Croisetière L; Hare L; Tessier A Environ Sci Technol; 2001 Mar; 35(5):923-7. PubMed ID: 11351536 [TBL] [Abstract][Full Text] [Related]
60. Relationship between metal and pigment concentrations in the Fe-hyperaccumulator moss Scopelophila ligulata. Nakajima H; Itoh K J Plant Res; 2017 Jan; 130(1):135-141. PubMed ID: 27761669 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]