BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 25919793)

  • 1. Raman micro spectroscopy for in vitro drug screening: subcellular localisation and interactions of doxorubicin.
    Farhane Z; Bonnier F; Casey A; Byrne HJ
    Analyst; 2015 Jun; 140(12):4212-23. PubMed ID: 25919793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring doxorubicin cellular uptake and trafficking using in vitro Raman microspectroscopy: short and long time exposure effects on lung cancer cell lines.
    Farhane Z; Bonnier F; Byrne HJ
    Anal Bioanal Chem; 2017 Feb; 409(5):1333-1346. PubMed ID: 27888307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular discrimination using in vitro Raman micro spectroscopy: the role of the nucleolus.
    Farhane Z; Bonnier F; Casey A; Maguire A; O'Neill L; Byrne HJ
    Analyst; 2015 Sep; 140(17):5908-19. PubMed ID: 26207998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating responses of lung cancer cell lines to Doxorubicin exposure: in vitro Raman micro spectroscopy, oxidative stress and bcl-2 protein expression.
    Farhane Z; Bonnier F; Maher MA; Bryant J; Casey A; Byrne HJ
    J Biophotonics; 2017 Jan; 10(1):151-165. PubMed ID: 27088439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doxorubicin kinetics and effects on lung cancer cell lines using in vitro Raman micro-spectroscopy: binding signatures, drug resistance and DNA repair.
    Farhane Z; Bonnier F; Howe O; Casey A; Byrne HJ
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28635172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the subcellular localization of doxorubicin in CHO-K1 using MEKC-LIF: liposomal carrier for enhanced drug delivery.
    Ho JA; Fan NC; Jou AF; Wu LC; Sun TP
    Talanta; 2012 Sep; 99():683-8. PubMed ID: 22967611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single nuclei Raman spectroscopy for drug evaluation.
    Lin HH; Li YC; Chang CH; Liu C; Yu AL; Chen CH
    Anal Chem; 2012 Jan; 84(1):113-20. PubMed ID: 22053782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying and localizing intracellular nanoparticles using Raman spectroscopy.
    Dorney J; Bonnier F; Garcia A; Casey A; Chambers G; Byrne HJ
    Analyst; 2012 Mar; 137(5):1111-9. PubMed ID: 22273712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman micro-spectroscopy.
    Farhane Z; Bonnier F; Byrne HJ
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28703437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the potential of Raman microspectroscopy for prediction of chemotherapeutic response to cisplatin in lung adenocarcinoma.
    Nawaz H; Bonnier F; Knief P; Howe O; Lyng FM; Meade AD; Byrne HJ
    Analyst; 2010 Dec; 135(12):3070-6. PubMed ID: 20931112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy.
    Huang J; Zong C; Shen H; Cao Y; Ren B; Zhang Z
    Nanoscale; 2013 Nov; 5(21):10591-8. PubMed ID: 24057012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy.
    Kang B; Afifi MM; Austin LA; El-Sayed MA
    ACS Nano; 2013 Aug; 7(8):7420-7. PubMed ID: 23909658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy.
    Nawaz H; Bonnier F; Meade AD; Lyng FM; Byrne HJ
    Analyst; 2011 Jun; 136(12):2450-63. PubMed ID: 21519610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles.
    Cui C; Xue YN; Wu M; Zhang Y; Yu P; Liu L; Zhuo RX; Huang SW
    Biomaterials; 2013 May; 34(15):3858-69. PubMed ID: 23452389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating drug induced changes in single, living lymphocytes based on Raman micro-spectroscopy.
    Schie IW; Alber L; Gryshuk AL; Chan JW
    Analyst; 2014 Jun; 139(11):2726-33. PubMed ID: 24756205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman micro-spectroscopy for rapid screening of oral squamous cell carcinoma.
    Carvalho LF; Bonnier F; O'Callaghan K; O'Sullivan J; Flint S; Byrne HJ; Lyng FM
    Exp Mol Pathol; 2015 Jun; 98(3):502-9. PubMed ID: 25805102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional correlation analysis of Raman microspectroscopy of subcellular interactions of drugs in vitro.
    Byrne HJ; Bonnier F; Farhane Z
    J Biophotonics; 2019 Mar; 12(3):e201800328. PubMed ID: 30414254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique.
    Lamprecht C; Gierlinger N; Heister E; Unterauer B; Plochberger B; Brameshuber M; Hinterdorfer P; Hild S; Ebner A
    J Phys Condens Matter; 2012 Apr; 24(16):164206. PubMed ID: 22466107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Raman microspectroscopy for cellular and subcellular analysis: towards in vitro high-content spectralomic analysis.
    Byrne HJ; Bonnier F; Casey A; Maher M; McIntyre J; Efeoglu E; Farhane Z
    Appl Opt; 2018 Aug; 57(22):E11-E19. PubMed ID: 30117916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracing the Therapeutic Process of Targeted Aptamer/Drug Conjugate on Cancer Cells by Surface-Enhanced Raman Scattering Spectroscopy.
    Deng R; Qu H; Liang L; Zhang J; Zhang B; Huang D; Xu S; Liang C; Xu W
    Anal Chem; 2017 Mar; 89(5):2844-2851. PubMed ID: 28192929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.