These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 25919810)
1. In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Hossain MK; Cho HY; Kim KJ; Choi JW Biosens Bioelectron; 2015 Sep; 71():300-305. PubMed ID: 25919810 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. Cheng YJ; Luo GF; Zhu JY; Xu XD; Zeng X; Cheng DB; Li YM; Wu Y; Zhang XZ; Zhuo RX; He F ACS Appl Mater Interfaces; 2015 May; 7(17):9078-87. PubMed ID: 25893819 [TBL] [Abstract][Full Text] [Related]
3. Dual-mode tracking of tumor-cell-specific drug delivery using fluorescence and label-free SERS techniques. Yang J; Wang Z; Zong S; Chen H; Zhang R; Cui Y Biosens Bioelectron; 2014 Jan; 51():82-9. PubMed ID: 23939474 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of Graphene and AuNP Core Polyaniline Shell Nanocomposites as Multifunctional Theranostic Platforms for SERS Real-time Monitoring and Chemo-photothermal Therapy. Chen H; Liu Z; Li S; Su C; Qiu X; Zhong H; Guo Z Theranostics; 2016; 6(8):1096-104. PubMed ID: 27279904 [TBL] [Abstract][Full Text] [Related]
5. SERS-active liposome@Ag/Au nanocomposite for NIR light-driven drug release. Zhao Y; Zhao J; Shan G; Yan D; Chen Y; Liu Y Colloids Surf B Biointerfaces; 2017 Jun; 154():150-159. PubMed ID: 28334692 [TBL] [Abstract][Full Text] [Related]
6. Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy. Kang B; Afifi MM; Austin LA; El-Sayed MA ACS Nano; 2013 Aug; 7(8):7420-7. PubMed ID: 23909658 [TBL] [Abstract][Full Text] [Related]
7. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Tian F; Conde J; Bao C; Chen Y; Curtin J; Cui D Biomaterials; 2016 Nov; 106():87-97. PubMed ID: 27552319 [TBL] [Abstract][Full Text] [Related]
8. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy. Qi WW; Yu HY; Guo H; Lou J; Wang ZM; Liu P; Sapin-Minet A; Maincent P; Hong XC; Hu XM; Xiao YL Mol Pharm; 2015 Mar; 12(3):675-83. PubMed ID: 25584860 [TBL] [Abstract][Full Text] [Related]
9. Nuclear-targeting TAT-PEG-Asp8-doxorubicin polymeric nanoassembly to overcome drug-resistant colon cancer. Pan ZZ; Wang HY; Zhang M; Lin TT; Zhang WY; Zhao PF; Tang YS; Xiong Y; Zeng YE; Huang YZ Acta Pharmacol Sin; 2016 Aug; 37(8):1110-20. PubMed ID: 27292613 [TBL] [Abstract][Full Text] [Related]
10. Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release. Cao H; Yang Y; Chen X; Shao Z Nanoscale; 2016 Mar; 8(12):6754-60. PubMed ID: 26952741 [TBL] [Abstract][Full Text] [Related]
11. Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Huang J; Zong C; Shen H; Cao Y; Ren B; Zhang Z Nanoscale; 2013 Nov; 5(21):10591-8. PubMed ID: 24057012 [TBL] [Abstract][Full Text] [Related]
12. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. Wang F; Wang YC; Dou S; Xiong MH; Sun TM; Wang J ACS Nano; 2011 May; 5(5):3679-92. PubMed ID: 21462992 [TBL] [Abstract][Full Text] [Related]
13. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. Gao Y; Chen Y; Ji X; He X; Yin Q; Zhang Z; Shi J; Li Y ACS Nano; 2011 Dec; 5(12):9788-98. PubMed ID: 22070571 [TBL] [Abstract][Full Text] [Related]
14. Breast cancer targeted chemotherapy based on doxorubicin-loaded bombesin peptide modified nanocarriers. Wang C; Sun X; Wang K; Wang Y; Yang F; Wang H Drug Deliv; 2016 Oct; 23(8):2697-2702. PubMed ID: 26203692 [TBL] [Abstract][Full Text] [Related]
15. pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Chen P; Wang Z; Zong S; Zhu D; Chen H; Zhang Y; Wu L; Cui Y Biosens Bioelectron; 2016 Jan; 75():446-51. PubMed ID: 26360244 [TBL] [Abstract][Full Text] [Related]
16. Activable Cell-Penetrating Peptide Conjugated Prodrug for Tumor Targeted Drug Delivery. Cheng H; Zhu JY; Xu XD; Qiu WX; Lei Q; Han K; Cheng YJ; Zhang XZ ACS Appl Mater Interfaces; 2015 Jul; 7(29):16061-9. PubMed ID: 26161578 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle-directed sub-cellular localization of doxorubicin and the sensitization breast cancer cells by circumventing GST-mediated drug resistance. Zeng X; Morgenstern R; Nyström AM Biomaterials; 2014 Jan; 35(4):1227-39. PubMed ID: 24210875 [TBL] [Abstract][Full Text] [Related]
18. pH-controllable drug carrier with SERS activity for targeting cancer cells. Fang W; Wang Z; Zong S; Chen H; Zhu D; Zhong Y; Cui Y Biosens Bioelectron; 2014 Jul; 57():10-5. PubMed ID: 24525050 [TBL] [Abstract][Full Text] [Related]
19. SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells. Chen H; Wang Z; Zong S; Wu L; Chen P; Zhu D; Wang C; Xu S; Cui Y ACS Appl Mater Interfaces; 2014 Oct; 6(20):17526-33. PubMed ID: 25272041 [TBL] [Abstract][Full Text] [Related]
20. Co-delivery of peptide-modified cisplatin and doxorubicin via mucoadhesive nanocapsules for potential synergistic intravesical chemotherapy of non-muscle-invasive bladder cancer. Lu S; Xu L; Kang ET; Mahendran R; Chiong E; Neoh KG Eur J Pharm Sci; 2016 Mar; 84():103-15. PubMed ID: 26780592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]