These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 25919982)

  • 1. An iridium oxide microelectrode for monitoring acute local pH changes of endothelial cells.
    Ng SR; O'Hare D
    Analyst; 2015 Jun; 140(12):4224-31. PubMed ID: 25919982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin-film IrOx pH microelectrode for microfluidic-based microsystems.
    Ges IA; Ivanov BL; Schaffer DK; Lima EA; Werdich AA; Baudenbacher FJ
    Biosens Bioelectron; 2005 Aug; 21(2):248-56. PubMed ID: 16023951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples.
    Prats-Alfonso E; Abad L; Casañ-Pastor N; Gonzalo-Ruiz J; Baldrich E
    Biosens Bioelectron; 2013 Jan; 39(1):163-9. PubMed ID: 22857994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies.
    Bezbaruah AN; Zhang TC
    Anal Chem; 2002 Nov; 74(22):5726-33. PubMed ID: 12463355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-metal oxide pH sensors for physiological application.
    O'Hare D; Parker KH; Winlove CP
    Med Eng Phys; 2006 Dec; 28(10):982-8. PubMed ID: 16793315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sol-gel deposition of iridium oxide for biomedical micro-devices.
    Nguyen CM; Rao S; Yang X; Dubey S; Mays J; Cao H; Chiao JC
    Sensors (Basel); 2015 Feb; 15(2):4212-28. PubMed ID: 25686309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemically induced disintegration of layer-by-layer-assembled thin films composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin.
    Sato K; Kodama D; Naka Y; Anzai J
    Biomacromolecules; 2006 Dec; 7(12):3302-5. PubMed ID: 17154455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of miniaturized pH biosensors based on electrosynthesized polymer films.
    Segut O; Lakard B; Herlem G; Rauch JY; Jeannot JC; Robert L; Fahys B
    Anal Chim Acta; 2007 Aug; 597(2):313-21. PubMed ID: 17683745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The open container-used microfluidic chip using IrO(x) ultramicroelectrodes for the in situ measurement of extracellular acidification.
    Wu CC; Lin WC; Fu SY
    Biosens Bioelectron; 2011 Jun; 26(10):4191-7. PubMed ID: 21570817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural interface dynamics following insertion of hydrous iridium oxide microelectrode arrays.
    Johnson MD; Langhals NB; Kipke DR
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3178-81. PubMed ID: 17947012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach.
    Bitziou E; O'Hare D; Patel BA
    Anal Chem; 2008 Nov; 80(22):8733-40. PubMed ID: 18947199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of low-cost metal oxide pH electrodes based on the polymeric precursor method.
    da Silva GM; Lemos SG; Pocrifka LA; Marreto PD; Rosario AV; Pereira EC
    Anal Chim Acta; 2008 May; 616(1):36-41. PubMed ID: 18471481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Minimally Invasive Microsensor Specially Designed for Simultaneous Dissolved Oxygen and pH Biofilm Profiling.
    Guimerà X; Moya A; Dorado AD; Illa X; Villa R; Gabriel D; Gamisans X; Gabriel G
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31683828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of honeycomb-patterned surface topography on the adhesion and signal transduction of porcine aortic endothelial cells.
    Yamamoto S; Tanaka M; Sunami H; Ito E; Yamashita S; Morita Y; Shimomura M
    Langmuir; 2007 Jul; 23(15):8114-20. PubMed ID: 17579463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and Characterization of Iridium Oxide pH Microelectrodes Based on Sputter Deposition Method.
    Xi Y; Guo Z; Wang L; Xu Q; Ruan T; Liu J
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia.
    Marzouk SA; Ufer S; Buck RP; Johnson TA; Dunlap LA; Cascio WE
    Anal Chem; 1998 Dec; 70(23):5054-61. PubMed ID: 9852787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An iridium-iridium oxide electrode for in vivo monitoring of blood pH changes.
    Papeschi G; Bordi S; Carlà M; Criscione L; Ledda F
    J Med Eng Technol; 1981 Mar; 5(2):86-8. PubMed ID: 7277452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular pH monitoring for use in closed-loop vagus nerve stimulation.
    Cork SC; Eftekhar A; Mirza KB; Zuliani C; Nikolic K; Gardiner JV; Bloom SR; Toumazou C
    J Neural Eng; 2018 Feb; 15(1):016001. PubMed ID: 28745303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD; Detlefsen DE
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):327-32. PubMed ID: 16485762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.