These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
463 related articles for article (PubMed ID: 25920333)
1. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Zeng L; Luo L; Pan Y; Luo S; Lu G; Wu A Nanoscale; 2015 May; 7(19):8946-54. PubMed ID: 25920333 [TBL] [Abstract][Full Text] [Related]
2. Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and near-infrared-responsive photodynamic therapy in cancers. Zhang L; Zeng L; Pan Y; Luo S; Ren W; Gong A; Ma X; Liang H; Lu G; Wu A Biomaterials; 2015 Mar; 44():82-90. PubMed ID: 25617128 [TBL] [Abstract][Full Text] [Related]
3. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Zeng L; Pan Y; Tian Y; Wang X; Ren W; Wang S; Lu G; Wu A Biomaterials; 2015 Jul; 57():93-106. PubMed ID: 25913254 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Zeng L; Ren W; Xiang L; Zheng J; Chen B; Wu A Nanoscale; 2013 Mar; 5(5):2107-13. PubMed ID: 23381832 [TBL] [Abstract][Full Text] [Related]
5. Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Ding Z; Liu P; Hu D; Sheng Z; Yi H; Gao G; Wu Y; Zhang P; Ling S; Cai L Biomater Sci; 2017 Mar; 5(4):762-771. PubMed ID: 28256661 [TBL] [Abstract][Full Text] [Related]
6. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer. Zeng L; Pan Y; Zou R; Zhang J; Tian Y; Teng Z; Wang S; Ren W; Xiao X; Zhang J; Zhang L; Li A; Lu G; Wu A Biomaterials; 2016 Oct; 103():116-127. PubMed ID: 27376560 [TBL] [Abstract][Full Text] [Related]
7. Dual-modal imaging and photodynamic therapy using upconversion nanoparticles for tumor cells. Yang C; Liu Q; He D; Na N; Zhao Y; Ouyang J Analyst; 2014 Dec; 139(24):6414-20. PubMed ID: 25327945 [TBL] [Abstract][Full Text] [Related]
8. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Jin S; Zhou L; Gu Z; Tian G; Yan L; Ren W; Yin W; Liu X; Zhang X; Hu Z; Zhao Y Nanoscale; 2013 Dec; 5(23):11910-8. PubMed ID: 24129918 [TBL] [Abstract][Full Text] [Related]
10. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy. Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626 [TBL] [Abstract][Full Text] [Related]
11. Photothermal effects of NaYF Wang X; Kang C; Pan Y; Jiang R Int J Nanomedicine; 2019; 14():4319-4331. PubMed ID: 31354263 [No Abstract] [Full Text] [Related]
12. Optimising FRET-efficiency of Nd Lin SL; Chang CA Nanoscale; 2020 Apr; 12(16):8742-8749. PubMed ID: 32307477 [TBL] [Abstract][Full Text] [Related]
13. Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles. Matlou GG; Oluwole DO; Prinsloo E; Nyokong T J Photochem Photobiol B; 2018 Sep; 186():216-224. PubMed ID: 30077918 [TBL] [Abstract][Full Text] [Related]
14. Near-infrared light-activated red-emitting upconverting nanoplatform for T Tang XL; Wu J; Lin BL; Cui S; Liu HM; Yu RT; Shen XD; Wang TW; Xia W Acta Biomater; 2018 Jul; 74():360-373. PubMed ID: 29763715 [TBL] [Abstract][Full Text] [Related]
15. Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging. Ma ZY; Liu YP; Bai LY; An J; Zhang L; Xuan Y; Zhang XS; Zhao YD Dalton Trans; 2015 Oct; 44(37):16304-12. PubMed ID: 26299897 [TBL] [Abstract][Full Text] [Related]
16. Gd-based upconversion nanocarriers with yolk-shell structure for dual-modal imaging and enhanced chemotherapy to overcome multidrug resistance in breast cancer. Pan Y; Zhang L; Zeng L; Ren W; Xiao X; Zhang J; Zhang L; Li A; Lu G; Wu A Nanoscale; 2016 Jan; 8(2):878-88. PubMed ID: 26648267 [TBL] [Abstract][Full Text] [Related]
17. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Qiao XF; Zhou JC; Xiao JW; Wang YF; Sun LD; Yan CH Nanoscale; 2012 Aug; 4(15):4611-23. PubMed ID: 22706800 [TBL] [Abstract][Full Text] [Related]
18. Fe3O4@mSiO2-FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells. Gao Z; Liu X; Deng G; Zhou F; Zhang L; Wang Q; Lu J Dalton Trans; 2016 Sep; 45(34):13456-65. PubMed ID: 27493065 [TBL] [Abstract][Full Text] [Related]
19. Y Yu Z; Xia Y; Xing J; Li Z; Zhen J; Jin Y; Tian Y; Liu C; Jiang Z; Li J; Wu A Nanoscale; 2018 Sep; 10(36):17038-17052. PubMed ID: 29850734 [TBL] [Abstract][Full Text] [Related]
20. Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy. Sengar P; Juárez P; Verdugo-Meza A; Arellano DL; Jain A; Chauhan K; Hirata GA; Fournier PGJ J Nanobiotechnology; 2018 Feb; 16(1):19. PubMed ID: 29482561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]