BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 25920335)

  • 1. A Case for Wide-Angle Breast Tomosynthesis.
    Samei E; Thompson J; Richard S; Bowsher J
    Acad Radiol; 2015 Jul; 22(7):860-9. PubMed ID: 25920335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can compression be reduced for breast tomosynthesis? Monte carlo study on mass and microcalcification conspicuity in tomosynthesis.
    Saunders RS; Samei E; Lo JY; Baker JA
    Radiology; 2009 Jun; 251(3):673-82. PubMed ID: 19474373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.
    Gong Z; Klanian K; Patel T; Sullivan O; Williams MB
    Med Phys; 2012 Dec; 39(12):7580-92. PubMed ID: 23231306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens.
    Seo N; Kim HH; Shin HJ; Cha JH; Kim H; Moon JH; Gong G; Ahn SH; Son BH
    Acta Radiol; 2014 Jul; 55(6):661-7. PubMed ID: 24005560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of prior mammograms on combined reading of digital mammography and digital breast tomosynthesis.
    Kim WH; Chang JM; Koo HR; Seo M; Bae MS; Lee J; Moon WK
    Acta Radiol; 2017 Feb; 58(2):148-155. PubMed ID: 27178032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model platform for optimizing a multiprojection breast imaging system.
    Chawla AS; Samei E; Saunders RS; Lo JY; Baker JA
    Med Phys; 2008 Apr; 35(4):1337-45. PubMed ID: 18491528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system.
    Rodrigues L; Magalhaes LA; Braz D
    Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative imaging in breast tomosynthesis and CT: comparison of detection and estimation task performance.
    Richard S; Samei E
    Med Phys; 2010 Jun; 37(6):2627-37. PubMed ID: 20632574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data.
    Young S; Bakic PR; Myers KJ; Jennings RJ; Park S
    Med Phys; 2013 May; 40(5):051914. PubMed ID: 23635284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.
    Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A
    Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a variable dose acquisition technique for microcalcification and mass detection in digital breast tomosynthesis.
    Das M; Gifford HC; O'Connor JM; Glick SJ
    Med Phys; 2009 Jun; 36(6):1976-84. PubMed ID: 19610286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views.
    Chan HP; Goodsitt MM; Helvie MA; Zelakiewicz S; Schmitz A; Noroozian M; Paramagul C; Roubidoux MA; Nees AV; Neal CH; Carson P; Lu Y; Hadjiiski L; Wei J
    Radiology; 2014 Dec; 273(3):675-85. PubMed ID: 25007048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning approach to estimate x-ray scatter in digital breast tomosynthesis: From phantom models to clinical applications.
    Pinto MC; Mauter F; Michielsen K; Biniazan R; Kappler S; Sechopoulos I
    Med Phys; 2023 Aug; 50(8):4744-4757. PubMed ID: 37394837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial clinical experience with contrast-enhanced digital breast tomosynthesis.
    Chen SC; Carton AK; Albert M; Conant EF; Schnall MD; Maidment AD
    Acad Radiol; 2007 Feb; 14(2):229-38. PubMed ID: 17236995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms.
    Baptista M; Di Maria S; Barros S; Figueira C; Sarmento M; Orvalho L; Vaz P
    Med Phys; 2015 Jul; 42(7):3788-800. PubMed ID: 26133581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of reconstruction algorithms for C-arm mammography tomosynthesis.
    Rakowski JT; Dennis MJ
    Med Phys; 2006 Aug; 33(8):3018-32. PubMed ID: 16964880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multigrid reconstruction with block-iterative updates for breast tomosynthesis.
    Michielsen K; Nuyts J
    Med Phys; 2015 Nov; 42(11):6537-48. PubMed ID: 26520744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic performance of digital breast tomosynthesis and full-field digital mammography with new reconstruction and new processing for dose reduction.
    Endo T; Morita T; Oiwa M; Suda N; Sato Y; Ichihara S; Shiraiwa M; Yoshikawa K; Horiba T; Ogawa H; Hayashi Y; Sendai T; Arai T
    Breast Cancer; 2018 Mar; 25(2):159-166. PubMed ID: 28956298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.