These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 25920411)
1. Observed and modeled effects of pH on bioconcentration of diphenhydramine, a weakly basic pharmaceutical, in fathead minnows. Nichols JW; Du B; Berninger JP; Connors KA; Chambliss CK; Erickson RJ; Hoffman AD; Brooks BW Environ Toxicol Chem; 2015 Jun; 34(6):1425-35. PubMed ID: 25920411 [TBL] [Abstract][Full Text] [Related]
2. Bioconcentration of two basic pharmaceuticals, verapamil and clozapine, in fish. Nallani GC; Edziyie RE; Paulos PM; Venables BJ; Constantine LA; Huggett DB Environ Toxicol Chem; 2016 Mar; 35(3):593-603. PubMed ID: 26753615 [TBL] [Abstract][Full Text] [Related]
3. Effects of multiwalled carbon nanotubes on the bioavailability and toxicity of diphenhydramine to Pimephales promelas in sediment exposures. Myer MH; Henderson WM; Black MC Environ Toxicol Chem; 2017 Feb; 36(2):320-328. PubMed ID: 27442616 [TBL] [Abstract][Full Text] [Related]
4. Influence of salinity and pH on bioconcentration of ionizable pharmaceuticals by the gulf killifish, Fundulus grandis. Scott WC; Haddad SP; Saari GN; Chambliss CK; Conkle JL; Matson CW; Brooks BW Chemosphere; 2019 Aug; 229():434-442. PubMed ID: 31082711 [TBL] [Abstract][Full Text] [Related]
5. Effects of the antihistamine diphenhydramine on selected aquatic organisms. Berninger JP; Du B; Connors KA; Eytcheson SA; Kolkmeier MA; Prosser KN; Valenti TW; Chambliss CK; Brooks BW Environ Toxicol Chem; 2011 Sep; 30(9):2065-72. PubMed ID: 21647947 [TBL] [Abstract][Full Text] [Related]
6. Chronic effects assessment and plasma concentrations of the beta-blocker propranolol in fathead minnows (Pimephales promelas). Giltrow E; Eccles PD; Winter MJ; McCormack PJ; Rand-Weaver M; Hutchinson TH; Sumpter JP Aquat Toxicol; 2009 Nov; 95(3):195-202. PubMed ID: 19819565 [TBL] [Abstract][Full Text] [Related]
7. Bioconcentration of nonylphenol in fathead minnows (Pimephales promelas). Snyder SA; Keith TL; Pierens SL; Snyder EM; Giesy JP Chemosphere; 2001 Sep; 44(8):1697-702. PubMed ID: 11534901 [TBL] [Abstract][Full Text] [Related]
8. Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. Armitage JM; Erickson RJ; Luckenbach T; Ng CA; Prosser RS; Arnot JA; Schirmer K; Nichols JW Environ Toxicol Chem; 2017 Apr; 36(4):882-897. PubMed ID: 27992066 [TBL] [Abstract][Full Text] [Related]
9. Time-specific and population-level differences in physiological responses of fathead minnows (Pimephales promelas) and golden shiners (Notemigonus crysoleucas) exposed to copper. Peles JD; Pistole DH; Moffe MC Aquat Toxicol; 2012 Mar; 109():222-7. PubMed ID: 21999964 [TBL] [Abstract][Full Text] [Related]
10. Fathead minnow (Pimephales promelas) embryo to adult exposure to decamethylcyclopentasiloxane (D5). Parrott JL; Alaee M; Wang D; Sverko E Chemosphere; 2013 Oct; 93(5):813-8. PubMed ID: 23245575 [TBL] [Abstract][Full Text] [Related]
11. Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod. Chen CC; Kuo DTF Environ Toxicol Chem; 2018 May; 37(5):1378-1386. PubMed ID: 29315781 [TBL] [Abstract][Full Text] [Related]
12. Bioconcentration of n-dodecane and its highly branched isomer 2,2,4,6,6-pentamethylheptane in fathead minnows. Tolls J; van Dijk J Chemosphere; 2002 Jun; 47(10):1049-57. PubMed ID: 12137037 [TBL] [Abstract][Full Text] [Related]
13. Reproductive and health assessment of fathead minnows (Pimephales promelas) inhabiting a pond containing oil sands process-affected water. Kavanagh RJ; Frank RA; Solomon KR; Van Der Kraak G Aquat Toxicol; 2013 Apr; 130-131():201-9. PubMed ID: 23416413 [TBL] [Abstract][Full Text] [Related]
14. Early life stage (ELS) toxicity of sucralose to fathead minnows, Pimephales promelas. Stoddard KI; Huggett DB Bull Environ Contam Toxicol; 2014 Oct; 93(4):383-7. PubMed ID: 25120258 [TBL] [Abstract][Full Text] [Related]
15. Life-cycle exposure of fathead minnows to environmentally relevant concentrations of the β-blocker drug propranolol. Parrott JL; Balakrishnan VK Environ Toxicol Chem; 2017 Jun; 36(6):1644-1651. PubMed ID: 27925269 [TBL] [Abstract][Full Text] [Related]
16. Bioconcentration, metabolism and effects of diphenhydramine on behavioral and biochemical markers in crucian carp (Carassius auratus). Xie Z; Lu G; Hou K; Qin D; Yan Z; Chen W Sci Total Environ; 2016 Feb; 544():400-9. PubMed ID: 26657385 [TBL] [Abstract][Full Text] [Related]
17. Pathology of fathead minnows (Pimephales promelas) exposed to chlorine dioxide and chlorite. Yonkos LT; Fisher DJ; Wright DA; Kane AS Mar Environ Res; 2000; 50(1-5):267-71. PubMed ID: 11460702 [TBL] [Abstract][Full Text] [Related]
18. Uptake and elimination of ionizable organic chemicals at fish gills: II. Observed and predicted effects of ph, alkalinity, and chemical properties. Erickson RJ; McKim JM; Lien GJ; Hoffman AD; Batterman SL Environ Toxicol Chem; 2006 Jun; 25(6):1522-32. PubMed ID: 16764470 [TBL] [Abstract][Full Text] [Related]
19. Differential uptake of and sensitivity to diphenhydramine in embryonic and larval zebrafish. Kristofco LA; Haddad SP; Chambliss CK; Brooks BW Environ Toxicol Chem; 2018 Apr; 37(4):1175-1181. PubMed ID: 29274281 [TBL] [Abstract][Full Text] [Related]
20. Tissue-specific uptake and bioconcentration of the oral contraceptive norethindrone in two freshwater fishes. Nallani GC; Paulos PM; Venables BJ; Edziyie RE; Constantine LA; Huggett DB Arch Environ Contam Toxicol; 2012 Feb; 62(2):306-13. PubMed ID: 21710293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]