BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 25920414)

  • 1. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion.
    Song S; Geyer H
    J Physiol; 2015 Aug; 593(16):3493-511. PubMed ID: 25920414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neuromuscular model of human locomotion combines spinal reflex circuits with voluntary movements.
    Ramadan R; Geyer H; Jeka J; Schöner G; Reimann H
    Sci Rep; 2022 May; 12(1):8189. PubMed ID: 35581211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model for the transfer of control from the brain to the spinal cord through synaptic learning.
    Sar P; Geyer H
    J Comput Neurosci; 2020 Nov; 48(4):365-375. PubMed ID: 33009635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury.
    Paul C; Bellotti M; Jezernik S; Curt A
    Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the roles of reflexes and central pattern generators in the control and modulation of human locomotion using a physiologically plausible neuromechanical model.
    Di Russo A; Stanev D; Sabnis A; Danner SM; Ausborn J; Armand S; Ijspeert A
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37757805
    [No Abstract]   [Full Text] [Related]  

  • 6. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion.
    Rybak IA; Shevtsova NA; Lafreniere-Roula M; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):617-39. PubMed ID: 17008376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular neuromuscular control of human locomotion by central pattern generator.
    Haghpanah SA; Farahmand F; Zohoor H
    J Biomech; 2017 Feb; 53():154-162. PubMed ID: 28126336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Afferent control of locomotor CPG: insights from a simple neuromechanical model.
    Markin SN; Klishko AN; Shevtsova NA; Lemay MA; Prilutsky BI; Rybak IA
    Ann N Y Acad Sci; 2010 Jun; 1198():21-34. PubMed ID: 20536917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chapter 2--the spinal generation of phases and cycle duration.
    Gossard JP; Sirois J; Noué P; Côté MP; Ménard A; Leblond H; Frigon A
    Prog Brain Res; 2011; 188():15-29. PubMed ID: 21333800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals.
    Minassian K; Hofstoetter US; Danner SM; Mayr W; Bruce JA; McKay WB; Tansey KE
    Neurorehabil Neural Repair; 2016 Mar; 30(3):233-43. PubMed ID: 26089308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation.
    Rybak IA; Stecina K; Shevtsova NA; McCrea DA
    J Physiol; 2006 Dec; 577(Pt 2):641-58. PubMed ID: 17008375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Spinal Motor Control.
    Nielsen JB
    Annu Rev Neurosci; 2016 Jul; 39():81-101. PubMed ID: 27023730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic sensorimotor interactions in locomotion.
    Rossignol S; Dubuc R; Gossard JP
    Physiol Rev; 2006 Jan; 86(1):89-154. PubMed ID: 16371596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a spinal stepping generator in man. Electrophysiological study.
    Bussel B; Roby-Brami A; Néris OR; Yakovleff A
    Acta Neurobiol Exp (Wars); 1996; 56(1):465-8. PubMed ID: 8787207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor module activation sequence and topography in the spinal cord during air-stepping in human: Insights into the traveling wave in spinal locomotor circuits.
    Yokoyama H; Hagio K; Ogawa T; Nakazawa K
    Physiol Rep; 2017 Nov; 5(22):. PubMed ID: 29180480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Modulation of Cutaneous Reflexes with Increasing Speed of Locomotion in Spinal Cats.
    Hurteau MF; Thibaudier Y; Dambreville C; Chraibi A; Desrochers E; Telonio A; Frigon A
    J Neurosci; 2017 Apr; 37(14):3896-3912. PubMed ID: 28292829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.