These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 25920465)

  • 1. Alpha-Linolenic Acid-Induced Increase in Neurogenesis is a Key Factor in the Improvement in the Passive Avoidance Task After Soman Exposure.
    Piermartiri TC; Pan H; Chen J; McDonough J; Grunberg N; Apland JP; Marini AM
    Neuromolecular Med; 2015 Sep; 17(3):251-69. PubMed ID: 25920465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated systemic administration of the nutraceutical alpha-linolenic acid exerts neuroprotective efficacy, an antidepressant effect and improves cognitive performance when given after soman exposure.
    Pan H; Piermartiri TC; Chen J; McDonough J; Oppel C; Driwech W; Winter K; McFarland E; Black K; Figueiredo T; Grunberg N; Marini AM
    Neurotoxicology; 2015 Dec; 51():38-50. PubMed ID: 26386148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology.
    Piermartiri T; Pan H; Figueiredo TH; Marini AM
    Molecules; 2015 Nov; 20(11):20355-80. PubMed ID: 26569216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-linolenic acid is a potent neuroprotective agent against soman-induced neuropathology.
    Pan H; Hu XZ; Jacobowitz DM; Chen C; McDonough J; Van Shura K; Lyman M; Marini AM
    Neurotoxicology; 2012 Oct; 33(5):1219-29. PubMed ID: 22884490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to nerve agents: from status epilepticus to neuroinflammation, brain damage, neurogenesis and epilepsy.
    de Araujo Furtado M; Rossetti F; Chanda S; Yourick D
    Neurotoxicology; 2012 Dec; 33(6):1476-1490. PubMed ID: 23000013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term cognitive deficits accompanied by reduced neurogenesis after soman poisoning.
    Joosen MJ; Jousma E; van den Boom TM; Kuijpers WC; Smit AB; Lucassen PJ; van Helden HP
    Neurotoxicology; 2009 Jan; 30(1):72-80. PubMed ID: 19100287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke.
    Blondeau N; Nguemeni C; Debruyne DN; Piens M; Wu X; Pan H; Hu X; Gandin C; Lipsky RH; Plumier JC; Marini AM; Heurteaux C
    Neuropsychopharmacology; 2009 Nov; 34(12):2548-59. PubMed ID: 19641487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The recovery of acetylcholinesterase activity and the progression of neuropathological and pathophysiological alterations in the rat basolateral amygdala after soman-induced status epilepticus: relation to anxiety-like behavior.
    Prager EM; Aroniadou-Anderjaska V; Almeida-Suhett CP; Figueiredo TH; Apland JP; Rossetti F; Olsen CH; Braga MF
    Neuropharmacology; 2014 Jun; 81():64-74. PubMed ID: 24486384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GM1 monosialoganglioside pretreatment protects against soman-induced seizure-related brain damage.
    Ballough GP; Cann FJ; Smith CD; Forster JS; Kling CE; Filbert MG
    Mol Chem Neuropathol; 1998 May; 34(1):1-23. PubMed ID: 9778643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholinesterase inhibition in the basolateral amygdala plays a key role in the induction of status epilepticus after soman exposure.
    Prager EM; Aroniadou-Anderjaska V; Almeida-Suhett CP; Figueiredo TH; Apland JP; Braga MF
    Neurotoxicology; 2013 Sep; 38():84-90. PubMed ID: 23817175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling.
    Palazuelos J; Ortega Z; Díaz-Alonso J; Guzmán M; Galve-Roperh I
    J Biol Chem; 2012 Jan; 287(2):1198-209. PubMed ID: 22102284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osthole Upregulates BDNF to Enhance Adult Hippocampal Neurogenesis in APP/PS1 Transgenic Mice.
    Liu H; Xue X; Shi H; Qi L; Gong D
    Biol Pharm Bull; 2015; 38(10):1439-49. PubMed ID: 26424009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists.
    Miller SL; Aroniadou-Anderjaska V; Figueiredo TH; Prager EM; Almeida-Suhett CP; Apland JP; Braga MF
    Toxicol Appl Pharmacol; 2015 Apr; 284(2):204-16. PubMed ID: 25689173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes.
    Golime R; Palit M; Acharya J; Dubey DK
    Neurotox Res; 2018 May; 33(4):738-748. PubMed ID: 28929435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of brain-derived neurotrophic factor and neurogenesis in oestradiol neuroprotection of the hippocampus of hypertensive rats.
    Pietranera L; Lima A; Roig P; De Nicola AF
    J Neuroendocrinol; 2010 Oct; 22(10):1082-92. PubMed ID: 20722975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the Antiseizure and Neuroprotective Efficacy of LY293558, Diazepam, Caramiphen, and LY293558-Caramiphen Combination against Soman in a Rat Model Relevant to the Pediatric Population.
    Apland JP; Aroniadou-Anderjaska V; Figueiredo TH; Pidoplichko VI; Rossetti K; Braga MFM
    J Pharmacol Exp Ther; 2018 May; 365(2):314-326. PubMed ID: 29467308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caramiphen edisylate as adjunct to standard therapy attenuates soman-induced seizures and cognitive deficits in rats.
    Schultz MK; Wright LK; de Araujo Furtado M; Stone MF; Moffett MC; Kelley NR; Bourne AR; Lumeh WZ; Schultz CR; Schwartz JE; Lumley LA
    Neurotoxicol Teratol; 2014; 44():89-104. PubMed ID: 24946037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino Acids Attenuate Insulin Action on Gluconeogenesis and Promote Fatty Acid Biosynthesis via mTORC1 Signaling Pathway in trout Hepatocytes.
    Dai W; Panserat S; Plagnes-Juan E; Seiliez I; Skiba-Cassy S
    Cell Physiol Biochem; 2015; 36(3):1084-100. PubMed ID: 26112996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of cellular senescence as a late effect and BDNF-TrkB signaling-mediated ameliorating effect on disruption of hippocampal neurogenesis after developmental exposure to lead acetate in rats.
    Yamashita R; Takahashi Y; Takashima K; Okano H; Ojiro R; Tang Q; Kikuchi S; Kobayashi M; Ogawa B; Jin M; Kubota R; Ikarashi Y; Yoshida T; Shibutani M
    Toxicology; 2021 May; 456():152782. PubMed ID: 33862172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression profiling of rat hippocampus following exposure to the acetylcholinesterase inhibitor soman.
    Dillman JF; Phillips CS; Kniffin DM; Tompkins CP; Hamilton TA; Kan RK
    Chem Res Toxicol; 2009 Apr; 22(4):633-8. PubMed ID: 19281266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.