BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25920684)

  • 1. Sensorless Viscosity Measurement in a Magnetically-Levitated Rotary Blood Pump.
    Hijikata W; Rao J; Abe S; Takatani S; Shinshi T
    Artif Organs; 2015 Jul; 39(7):559-68. PubMed ID: 25920684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow rate estimation of a centrifugal blood pump using the passively stabilized eccentric position of a magnetically levitated impeller.
    Shida S; Masuzawa T; Osa M
    Int J Artif Organs; 2019 Jun; 42(6):291-298. PubMed ID: 30854913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorless flow and head estimation in the VentrAssist rotary blood pump.
    Ayre PJ; Vidakovic SS; Tansley GD; Watterson PA; Lovell NH
    Artif Organs; 2000 Aug; 24(8):585-8. PubMed ID: 10971241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical antithrombogenic properties by vibrational excitation of the impeller in a magnetically levitated centrifugal blood pump.
    Murashige T; Hijikata W
    Artif Organs; 2019 Sep; 43(9):849-859. PubMed ID: 31321785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic characteristics of a magnetically levitated impeller in a centrifugal blood pump.
    Asama J; Shinshi T; Hoshi H; Takatani S; Shimokohbe A
    Artif Organs; 2007 Apr; 31(4):301-11. PubMed ID: 17437499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Axial Gap Clearance in a Hydrodynamic-Passive Magnetically Levitated Rotary Blood Pump Using X-Ray Radiography.
    Thamsen B; Plamondon M; Granegger M; Schmid Daners M; Kaufmann R; Neels A; Meboldt M
    Artif Organs; 2018 May; 42(5):510-515. PubMed ID: 29341175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Left ventricular assist system with a magnetically levitated impeller technology].
    Nojiri C
    Nihon Geka Gakkai Zasshi; 2002 Sep; 103(9):607-10. PubMed ID: 12386954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cost-effective extracorporeal magnetically-levitated centrifugal blood pump employing a disposable magnet-free impeller.
    Hijikata W; Mamiya T; Shinshi T; Takatani S
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1149-57. PubMed ID: 22320054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of thrombosis in a magnetically levitated blood pump by vibrational excitation of the impeller.
    Hijikata W; Maruyama T; Murashige T; Sakota D; Maruyama O
    Artif Organs; 2020 Jun; 44(6):594-603. PubMed ID: 31904107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of gravity on flow rate estimations of a centrifugal blood pump using the eccentric position of a levitated impeller.
    Shida S; Masuzawa T; Osa M
    Int J Artif Organs; 2020 Dec; 43(12):774-781. PubMed ID: 32393095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of motor current in flow rate measurement for the magnetically suspended centrifugal blood pump.
    Tsukiya T; Akamatsu T; Nishimura K; Yamada T; Nakazeki T
    Artif Organs; 1997 May; 21(5):396-401. PubMed ID: 9129771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.
    Qian KX; Wan FK; Ru WM; Zeng P; Yuan HY
    J Med Eng Technol; 2006; 30(2):78-82. PubMed ID: 16531346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring real-time blood viscosity with a ventricular assist device.
    Hijikata W; Maruyama T; Suzumori Y; Shinshi T
    Proc Inst Mech Eng H; 2019 May; 233(5):562-569. PubMed ID: 30894084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of real-time thrombus detection method in a magnetically levitated centrifugal blood pump using a porcine left ventricular assist circulation model.
    Seki H; Fujiwara T; Hijikata W; Murashige T; Tahara T; Yokota S; Ogata A; Ohuchi K; Mizuno T; Arai H
    Artif Organs; 2021 Jul; 45(7):726-735. PubMed ID: 33432615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Intelligent Ventricular Assist Device with a Function of Sensorless Thrombus Detection.
    Maruyama T; Murashige T; Sakota D; Maruyama O; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4516-4519. PubMed ID: 30441355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sealing performance of a magnetic fluid seal for rotary blood pumps.
    Mitamura Y; Takahashi S; Kano K; Okamoto E; Murabayashi S; Nishimura I; Higuchi TA
    Artif Organs; 2009 Sep; 33(9):770-3. PubMed ID: 19775271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.
    Lim TM; Cheng S; Chua LP
    Artif Organs; 2009 Jul; 33(7):509-31. PubMed ID: 19566728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.
    Mitamura Y; Kido K; Yano T; Sakota D; Yambe T; Sekine K; OKamoto E
    Artif Organs; 2007 Mar; 31(3):221-4. PubMed ID: 17343698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.
    Pai CN; Shinshi T; Shimokohbe A
    Proc Inst Mech Eng H; 2010; 224(7):913-24. PubMed ID: 20839658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.