These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25920819)

  • 21. Thermal properties and changes of acoustic parameters in an egg white phantom during heating and coagulation by high intensity focused ultrasound.
    Divkovic GW; Liebler M; Braun K; Dreyer T; Huber PE; Jenne JW
    Ultrasound Med Biol; 2007 Jun; 33(6):981-6. PubMed ID: 17434665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prostate thermal therapy with high intensity transurethral ultrasound: the impact of pelvic bone heating on treatment delivery.
    Wootton JH; Ross AB; Diederich CJ
    Int J Hyperthermia; 2007 Dec; 23(8):609-22. PubMed ID: 18097849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].
    Abramowicz JS; Kremkau FW; Merz E
    Ultraschall Med; 2012 Jun; 33(3):215-7. PubMed ID: 22700164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues.
    Tang K; Choy V; Chopra R; Bronskill MJ
    Phys Med Biol; 2007 May; 52(10):2905-19. PubMed ID: 17473359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an ultrasonic nonlinear frequency compounding method with applications in tissue thermometry.
    Hornsby T; Shaswary E; Tavakkoli JJ
    J Acoust Soc Am; 2021 Oct; 150(4):3192. PubMed ID: 34717469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application.
    Dabbagh A; Abdullah BJ; Abu Kasim NH; Ramasindarum C
    Int J Hyperthermia; 2014 Feb; 30(1):66-74. PubMed ID: 24286257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of thermodynamic properties of a thermo-acoustic emitter on the efficiency of thermal airborne ultrasound generation.
    Daschewski M; Kreutzbruck M; Prager J
    Ultrasonics; 2015 Dec; 63():16-22. PubMed ID: 26101177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting and managing heat dissipation from a neural probe.
    Smith AN; Christian MP; Firebaugh SL; Cooper GW; Jamieson BG
    Biomed Microdevices; 2015 Aug; 17(4):81. PubMed ID: 26223563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of thermal diffusivity of biomaterials by focused ultrasonic beams (thermal pulse decay method by focused ultrasonic beams).
    Nakayama M; Tanishita K
    Biomed Mater Eng; 1994; 4(2):105-14. PubMed ID: 7920196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correction of proton resonance frequency shift MR-thermometry errors caused by heat-induced magnetic susceptibility changes during high intensity focused ultrasound ablations in tissues containing fat.
    Baron P; Deckers R; de Greef M; Merckel LG; Bakker CJ; Bouwman JG; Bleys RL; van den Bosch MA; Bartels LW
    Magn Reson Med; 2014 Dec; 72(6):1580-9. PubMed ID: 24347129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948.
    Pennes HH
    J Appl Physiol (1985); 1998 Jul; 85(1):5-34. PubMed ID: 9714612
    [No Abstract]   [Full Text] [Related]  

  • 32. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits.
    McDannold NJ; King RL; Jolesz FA; Hynynen KH
    Radiology; 2000 Aug; 216(2):517-23. PubMed ID: 10924580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review of the processes by which ultrasound is generated through the interaction of ionizing radiation and irradiated materials: some possible applications.
    Baily NA
    Med Phys; 1992; 19(3):525-32. PubMed ID: 1508086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of directional thermal properties of biomaterials.
    Bhavaraju NC; Cao H; Yuan DY; Valvano JW; Webster JG
    IEEE Trans Biomed Eng; 2001 Feb; 48(2):261-7. PubMed ID: 11296882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Non-invasive estimation of the temperature gradient of internal living tissue layers by ultrasound method].
    Klochko GI; Logvinenko AI; Sytnik OV
    Med Tekh; 2002; (3):10-3. PubMed ID: 12224243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstruction of thermal property distributions of tissue phantoms from temperature measurements--thermal conductivity, thermal capacity and thermal diffusivity.
    Sumi C; Yanagimura H
    Phys Med Biol; 2007 May; 52(10):2845-63. PubMed ID: 17473355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature rise in a tissue-mimicking material generated by unfocused and focused ultrasonic transducers.
    Wu J; Chase JD; Zhu Z; Holzapfel TP
    Ultrasound Med Biol; 1992; 18(5):495-512. PubMed ID: 1509624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sinusoidal heating method to noninvasively measure tissue perfusion.
    Liu J; Zhou YX; Deng ZS
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):867-77. PubMed ID: 12148826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-invasive estimation of hyperthermia temperatures with ultrasound.
    Arthur RM; Straube WL; Trobaugh JW; Moros EG
    Int J Hyperthermia; 2005 Sep; 21(6):589-600. PubMed ID: 16147442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.
    Killingback AL; Newey VR; El-Brawany MA; Nassiri DK
    Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.