These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 25920823)
1. Comparison between experimental and computational methods for the acoustic and thermal characterization of therapeutic ultrasound fields. Maruvada S; Liu Y; Soneson JE; Herman BA; Harris GR J Acoust Soc Am; 2015 Apr; 137(4):1704-13. PubMed ID: 25920823 [TBL] [Abstract][Full Text] [Related]
2. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution. Liu Y; Wear KA; Harris GR Ultrasound Med Biol; 2017 Oct; 43(10):2329-2342. PubMed ID: 28735734 [TBL] [Abstract][Full Text] [Related]
3. A closer look at ultrasonic attenuation and heating in a tissue-mimicking material. Maruvada S; Liu Y; Soneson JE; Herman BA; Harris GR Phys Med Biol; 2018 Dec; 63(24):245008. PubMed ID: 30523987 [TBL] [Abstract][Full Text] [Related]
4. Comparative study of temperature measurements in ex vivo swine muscle and a tissue-mimicking material during high intensity focused ultrasound exposures. Maruvada S; Liu Y; Pritchard WF; Herman BA; Harris GR Phys Med Biol; 2012 Jan; 57(1):1-19. PubMed ID: 22127191 [TBL] [Abstract][Full Text] [Related]
5. A comparative evaluation of three hydrophones and a numerical model in high intensity focused ultrasound fields. Haller J; Jenderka KV; Durando G; Shaw A J Acoust Soc Am; 2012 Feb; 131(2):1121-30. PubMed ID: 22352487 [TBL] [Abstract][Full Text] [Related]
6. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging. Yu Y; Shen G; Zhou Y; Bai J; Chen Y Ultrasound Med Biol; 2013 Nov; 39(11):2021-33. PubMed ID: 23972377 [TBL] [Abstract][Full Text] [Related]
7. Development and characterization of polyurethane-based tissue and blood mimicking materials for high intensity therapeutic ultrasound. Liu Y; Maruvada S J Acoust Soc Am; 2022 May; 151(5):3043. PubMed ID: 35649924 [TBL] [Abstract][Full Text] [Related]
8. Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes. Bessonova OV; Wilkens V IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):290-300. PubMed ID: 23357903 [TBL] [Abstract][Full Text] [Related]
9. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. Morris P; Hurrell A; Shaw A; Zhang E; Beard P J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943 [TBL] [Abstract][Full Text] [Related]
10. Experimental validation of acoustic and thermal modeling in heterogeneous phantoms using the hybrid angular spectrum method. Hansen M; Christensen D; Payne A Int J Hyperthermia; 2021; 38(1):1617-1626. PubMed ID: 34763581 [TBL] [Abstract][Full Text] [Related]
11. Robust spot-poled membrane hydrophones for measurement of large amplitude pressure waveforms generated by high intensity therapeutic ultrasonic transducers. Wilkens V; Sonntag S; Georg O J Acoust Soc Am; 2016 Mar; 139(3):1319-32. PubMed ID: 27036269 [TBL] [Abstract][Full Text] [Related]
12. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence. Brewin MP; Pike LC; Rowland DE; Birch MJ Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021 [TBL] [Abstract][Full Text] [Related]
13. A non-exothermic cell-embedding tissue-mimicking material for studies of ultrasound-induced hyperthermia and drug release. Mylonopoulou E; Bazán-Peregrino M; Arvanitis CD; Coussios CC Int J Hyperthermia; 2013; 29(2):133-44. PubMed ID: 23406389 [TBL] [Abstract][Full Text] [Related]
14. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach. Wear KA; Howard SM IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548 [TBL] [Abstract][Full Text] [Related]
15. Assessment of errors in intensity measurements of pulse echo ultrasound using miniature hydrophones. Fischella PS; Carson PL Med Phys; 1979; 6(5):404-11. PubMed ID: 492074 [TBL] [Abstract][Full Text] [Related]
16. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating. Killingback AL; Newey VR; El-Brawany MA; Nassiri DK Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269 [TBL] [Abstract][Full Text] [Related]
17. Attenuation Coefficients of the Individual Components of the International Electrotechnical Commission Agar Tissue-Mimicking Material. Rabell-Montiel A; Anderson T; Pye SD; Moran CM Ultrasound Med Biol; 2018 Nov; 44(11):2371-2378. PubMed ID: 30076033 [TBL] [Abstract][Full Text] [Related]
18. Durability study of a gellan gum-based tissue-mimicking phantom for ultrasonic thermal therapy. Cortela GA; Negreira CA; Pereira WCA J Acoust Soc Am; 2020 Mar; 147(3):1531. PubMed ID: 32237853 [TBL] [Abstract][Full Text] [Related]
19. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms. Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751 [TBL] [Abstract][Full Text] [Related]
20. In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome. Secomski W; Bilmin K; Kujawska T; Nowicki A; Grieb P; Lewin PA Ultrasonics; 2017 May; 77():203-213. PubMed ID: 28254565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]