BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 25921059)

  • 1. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma.
    Witzig TE; Reeder C; Han JJ; LaPlant B; Stenson M; Tun HW; Macon W; Ansell SM; Habermann TM; Inwards DJ; Micallef IN; Johnston PB; Porrata LF; Colgan JP; Markovic S; Nowakowski GS; Gupta M
    Blood; 2015 Jul; 126(3):328-35. PubMed ID: 25921059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mTOR inhibition in T-cell lymphoma: a path(way) forward.
    Moskowitz AJ; Horwitz SM
    Blood; 2015 Jul; 126(3):284-6. PubMed ID: 26185115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma.
    Johnston PB; Inwards DJ; Colgan JP; Laplant BR; Kabat BF; Habermann TM; Micallef IN; Porrata LF; Ansell SM; Reeder CB; Roy V; Witzig TE
    Am J Hematol; 2010 May; 85(5):320-4. PubMed ID: 20229590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro.
    Jordan NJ; Dutkowski CM; Barrow D; Mottram HJ; Hutcheson IR; Nicholson RI; Guichard SM; Gee JM
    Breast Cancer Res; 2014 Jan; 16(1):R12. PubMed ID: 24457069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition.
    Breuleux M; Klopfenstein M; Stephan C; Doughty CA; Barys L; Maira SM; Kwiatkowski D; Lane HA
    Mol Cancer Ther; 2009 Apr; 8(4):742-53. PubMed ID: 19372546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Everolimus inhibits anti-HLA I antibody-mediated endothelial cell signaling, migration and proliferation more potently than sirolimus.
    Jin YP; Valenzuela NM; Ziegler ME; Rozengurt E; Reed EF
    Am J Transplant; 2014 Apr; 14(4):806-19. PubMed ID: 24580843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular tumors have increased p70 S6-kinase activation and are inhibited by topical rapamycin.
    Du W; Gerald D; Perruzzi CA; Rodriguez-Waitkus P; Enayati L; Krishnan B; Edmonds J; Hochman ML; Lev DC; Phung TL
    Lab Invest; 2013 Oct; 93(10):1115-27. PubMed ID: 23938603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Combination of Sorafenib and Everolimus Abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models.
    Pignochino Y; Dell'Aglio C; Basiricò M; Capozzi F; Soster M; Marchiò S; Bruno S; Gammaitoni L; Sangiolo D; Torchiaro E; D'Ambrosio L; Fagioli F; Ferrari S; Alberghini M; Picci P; Aglietta M; Grignani G
    Clin Cancer Res; 2013 Apr; 19(8):2117-31. PubMed ID: 23434734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia.
    Badura S; Tesanovic T; Pfeifer H; Wystub S; Nijmeijer BA; Liebermann M; Falkenburg JH; Ruthardt M; Ottmann OG
    PLoS One; 2013; 8(11):e80070. PubMed ID: 24244612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and pharmacologic evidence that mTOR targeting outweighs mTORC1 inhibition as an antimyeloma strategy.
    Chen X; Díaz-Rodríguez E; Ocio EM; Paiva B; Mortensen DS; Lopez-Girona A; Chopra R; Miguel JS; Pandiella A
    Mol Cancer Ther; 2014 Feb; 13(2):504-16. PubMed ID: 24431075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of the novel mTOR inhibitor Torin-2 in B-precursor acute lymphoblastic leukemia and its therapeutic potential to prevent Akt reactivation.
    Simioni C; Cani A; Martelli AM; Zauli G; Tabellini G; McCubrey J; Capitani S; Neri LM
    Oncotarget; 2014 Oct; 5(20):10034-47. PubMed ID: 25296981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models.
    Zhang H; Berel D; Wang Y; Li P; Bhowmick NA; Figlin RA; Kim HL
    PLoS One; 2013; 8(1):e54918. PubMed ID: 23349989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness and molecular interactions of the clinically active mTORC1 inhibitor everolimus in combination with tamoxifen or letrozole in vitro and in vivo.
    Martin LA; Pancholi S; Farmer I; Guest S; Ribas R; Weigel MT; Thornhill AM; Ghazoui Z; A'Hern R; Evans DB; Lane HA; Johnston SR; Dowsett M
    Breast Cancer Res; 2012 Oct; 14(5):R132. PubMed ID: 23075476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNS-032 inhibits mTORC1/mTORC2 activity in acute myeloid leukemia cells and has synergistic activity with perifosine against Akt.
    Meng H; Jin Y; Liu H; You L; Yang C; Yang X; Qian W
    J Hematol Oncol; 2013 Feb; 6():18. PubMed ID: 23415012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MLN0128, an ATP-competitive mTOR kinase inhibitor with potent in vitro and in vivo antitumor activity, as potential therapy for bone and soft-tissue sarcoma.
    Slotkin EK; Patwardhan PP; Vasudeva SD; de Stanchina E; Tap WD; Schwartz GK
    Mol Cancer Ther; 2015 Feb; 14(2):395-406. PubMed ID: 25519700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.
    Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R
    Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma.
    Witzig TE; Reeder CB; LaPlant BR; Gupta M; Johnston PB; Micallef IN; Porrata LF; Ansell SM; Colgan JP; Jacobsen ED; Ghobrial IM; Habermann TM
    Leukemia; 2011 Feb; 25(2):341-7. PubMed ID: 21135857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pan-deacetylase inhibitor panobinostat induces cell death and synergizes with everolimus in Hodgkin lymphoma cell lines.
    Lemoine M; Derenzini E; Buglio D; Medeiros LJ; Davis RE; Zhang J; Ji Y; Younes A
    Blood; 2012 Apr; 119(17):4017-25. PubMed ID: 22408261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity.
    Martin EC; Rhodes LV; Elliott S; Krebs AE; Nephew KP; Flemington EK; Collins-Burow BM; Burow ME
    Mol Cancer; 2014 Oct; 13():229. PubMed ID: 25283550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential.
    Neri LM; Cani A; Martelli AM; Simioni C; Junghanss C; Tabellini G; Ricci F; Tazzari PL; Pagliaro P; McCubrey JA; Capitani S
    Leukemia; 2014 Apr; 28(4):739-48. PubMed ID: 23892718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.