These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25921223)

  • 1. All your data are always missing: incorporating bias due to measurement error into the potential outcomes framework.
    Edwards JK; Cole SR; Westreich D
    Int J Epidemiol; 2015 Aug; 44(4):1452-9. PubMed ID: 25921223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imputation approaches for potential outcomes in causal inference.
    Westreich D; Edwards JK; Cole SR; Platt RW; Mumford SL; Schisterman EF
    Int J Epidemiol; 2015 Oct; 44(5):1731-7. PubMed ID: 26210611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of bias-correction methods for exposure measurement error using repeated measurements with and without missing data.
    Batistatou E; McNamee R
    Stat Med; 2012 Dec; 31(28):3467-80. PubMed ID: 22733598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.
    Shen CW; Chen YH
    Biostatistics; 2015 Oct; 16(4):740-53. PubMed ID: 26012353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement error correction using validation data: a review of methods and their applicability in case-control studies.
    Thürigen D; Spiegelman D; Blettner M; Heuer C; Brenner H
    Stat Methods Med Res; 2000 Oct; 9(5):447-74. PubMed ID: 11191260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous inference and bias analysis for longitudinal data with covariate measurement error and missing responses.
    Yi GY; Liu W; Wu L
    Biometrics; 2011 Mar; 67(1):67-75. PubMed ID: 20528858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How can I deal with missing data in my study?
    Bennett DA
    Aust N Z J Public Health; 2001 Oct; 25(5):464-9. PubMed ID: 11688629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adjusting a relative-risk estimate for study imperfections.
    Maldonado G
    J Epidemiol Community Health; 2008 Jul; 62(7):655-63. PubMed ID: 18559450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal inference with missing exposure information: Methods and applications to an obstetric study.
    Zhang Z; Liu W; Zhang B; Tang L; Zhang J
    Stat Methods Med Res; 2016 Oct; 25(5):2053-2066. PubMed ID: 24318273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches.
    Little RJ; Rubin DB
    Annu Rev Public Health; 2000; 21():121-45. PubMed ID: 10884949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causal inference with observational data: the need for triangulation of evidence.
    Hammerton G; Munafò MR
    Psychol Med; 2021 Mar; 51(4):563-578. PubMed ID: 33682654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic bias.
    Levy DM; Peart SJ
    Stat Methods Med Res; 2008 Jun; 17(3):265-77. PubMed ID: 17925315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On model selections for repeated measurement data in clinical studies.
    Zou B; Jin B; Koch GG; Zhou H; Borst SE; Menon S; Shuster JJ
    Stat Med; 2015 May; 34(10):1621-33. PubMed ID: 25645442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple Imputation to Account for Measurement Error in Marginal Structural Models.
    Edwards JK; Cole SR; Westreich D; Crane H; Eron JJ; Mathews WC; Moore R; Boswell SL; Lesko CR; Mugavero MJ;
    Epidemiology; 2015 Sep; 26(5):645-52. PubMed ID: 26214338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials.
    Mallinckrodt CH; Lin Q; Molenberghs M
    Pharm Stat; 2013; 12(1):1-6. PubMed ID: 23193075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifiability of causal effects for binary variables with baseline data missing due to death.
    Yan W; Hu Y; Geng Z
    Biometrics; 2012 Mar; 68(1):121-8. PubMed ID: 21838813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can statistical linkage of missing variables reduce bias in treatment effect estimates in comparative effectiveness research studies?
    Crown W; Chang J; Olson M; Kahler K; Swindle J; Buzinec P; Shah N; Borah B
    J Comp Eff Res; 2015 Sep; 4(5):455-63. PubMed ID: 26436848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights on bias and information in group-level studies.
    Sheppard L
    Biostatistics; 2003 Apr; 4(2):265-78. PubMed ID: 12925521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Best practices for missing data management in counseling psychology.
    Schlomer GL; Bauman S; Card NA
    J Couns Psychol; 2010 Jan; 57(1):1-10. PubMed ID: 21133556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.