These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 25921344)
1. The correlation of the binding mechanism of the polypyrrole-carbon capacitive interphase with electrochemical stability of the composite electrode. Mosch HL; Höppener S; Paulus RM; Schröter B; Schubert US; Ignaszak A Phys Chem Chem Phys; 2015 May; 17(20):13323-32. PubMed ID: 25921344 [TBL] [Abstract][Full Text] [Related]
2. Specific Surface versus Electrochemically Active Area of the Carbon/Polypyrrole Capacitor: Correlation of Ion Dynamics Studied by an Electrochemical Quartz Crystal Microbalance with BET Surface. Mosch HL; Akintola O; Plass W; Höppener S; Schubert US; Ignaszak A Langmuir; 2016 May; 32(18):4440-9. PubMed ID: 27082127 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical impedance study of the polymerization of pyrrole on high surface area carbon electrodes. Moghaddam RB; Pickup PG Phys Chem Chem Phys; 2010 May; 12(18):4733-41. PubMed ID: 20428553 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites. Ullah R; Khan N; Khattak R; Khan M; Khan MS; Ali OM Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054647 [TBL] [Abstract][Full Text] [Related]
5. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor. Goornavar V; Jeffers R; Biradar S; Ramesh GT Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():299-307. PubMed ID: 24857497 [TBL] [Abstract][Full Text] [Related]
6. Two-step electrochemical synthesis of polypyrrole/reduced graphene oxide composites as efficient Pt-free counter electrode for plastic dye-sensitized solar cells. Liu W; Fang Y; Xu P; Lin Y; Yin X; Tang G; He M ACS Appl Mater Interfaces; 2014 Sep; 6(18):16249-56. PubMed ID: 25162375 [TBL] [Abstract][Full Text] [Related]
7. Conductive polypyrrole/viscose fiber composites. Wang N; Li G; Yu Z; Zhang X; Qi X Carbohydr Polym; 2015 Aug; 127():332-9. PubMed ID: 25965491 [TBL] [Abstract][Full Text] [Related]
8. Study of neuron survival on polypyrrole-embedded single-walled carbon nanotube substrates for long-term growth conditions. Hernández-Ferrer J; Pérez-Bruzón RN; Azanza MJ; González M; Del Moral R; Ansón-Casaos A; de la Fuente JM; Marijuan PC; Martínez MT J Biomed Mater Res A; 2014 Dec; 102(12):4443-54. PubMed ID: 24677410 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical co-deposition of conductive polymer-silica hybrid thin films. Raveh M; Liu L; Mandler D Phys Chem Chem Phys; 2013 Jul; 15(26):10876-84. PubMed ID: 23698356 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Investigation of PANI:PPy/AC and PANI:PEDOT/AC Composites as Electrode Materials in Supercapacitors. Khan S; Alkhedher M; Raza R; Ahmad MA; Majid A; Din EMTE Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631859 [TBL] [Abstract][Full Text] [Related]
11. High performance polypyrrole/SWCNTs composite film as a promising organic thermoelectric material. Liu Z; Sun J; Song H; Pan Y; Song Y; Zhu Y; Yao Y; Huang F; Zuo C RSC Adv; 2021 May; 11(29):17704-17709. PubMed ID: 35480213 [TBL] [Abstract][Full Text] [Related]
12. Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes. Mykhailiv O; Imierska M; Petelczyc M; Echegoyen L; Plonska-Brzezinska ME Chemistry; 2015 Apr; 21(15):5783-93. PubMed ID: 25736714 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of the effects of rinsing and aging of polypyrrole/nanocellulose composites on their electrochemical properties. Carlsson DO; Sjödin M; Nyholm L; Strømme M J Phys Chem B; 2013 Apr; 117(14):3900-10. PubMed ID: 23495670 [TBL] [Abstract][Full Text] [Related]
15. Conductive, capacitive, and viscoelastic properties of a new composite of the C60-pd conducting polymer and single-wall carbon nanotubes. Pieta P; Grodzka E; Winkler K; Warczak M; Sadkowski A; Zukowska GZ; Venukadasula GM; D'Souza F; Kutner W J Phys Chem B; 2009 May; 113(19):6682-91. PubMed ID: 19361175 [TBL] [Abstract][Full Text] [Related]
16. Impact of the electrochemical porosity and chemical composition on the lithium ion exchange behavior of polypyrroles (ClO4-, TOS-, TFSI-) prepared electrochemically in propylene carbonate. comparative EQCM, EIS and CV studies. Dziewoński PM; Grzeszczuk M J Phys Chem B; 2010 Jun; 114(21):7158-71. PubMed ID: 20459080 [TBL] [Abstract][Full Text] [Related]
17. Macroporous polypyrrole-TiO2 composites with improved photoactivity and electrochemical sensitivity. Li X; Sun J; He G; Jiang G; Tan Y; Xue B J Colloid Interface Sci; 2013 Dec; 411():34-40. PubMed ID: 24112837 [TBL] [Abstract][Full Text] [Related]
18. Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Firoz Babu K; Siva Subramanian SP; Anbu Kulandainathan M Carbohydr Polym; 2013 Apr; 94(1):487-95. PubMed ID: 23544566 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Electrochemical Deposition of Cobalt Complex and Poly(pyrrole) Thin Films for Supercapacitor Electrodes. Parnell CM; Chhetri BP; Mitchell TB; Watanabe F; Kannarpady G; RanguMagar AB; Zhou H; Alghazali KM; Biris AS; Ghosh A Sci Rep; 2019 Apr; 9(1):5650. PubMed ID: 30948739 [TBL] [Abstract][Full Text] [Related]
20. Impedance studies of a nano-structured conducting polymer and its application to the design of reliable scaffolds for impedimetric biosensors. Shamsipur M; Kazemi SH; Mousavi MF Biosens Bioelectron; 2008 Sep; 24(1):104-10. PubMed ID: 18457942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]