BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25921599)

  • 1. Experimental study on restricting the robotic end-effector inside a lesion for safe telesurgery.
    Jang J; Kim HW; So BR; Kim YS
    Minim Invasive Ther Allied Technol; 2015; 24(6):317-25. PubMed ID: 25921599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and verification of a safety region for brain tumor removal with a telesurgical robot system.
    Jang J; Kim HW; Kim YS
    Minim Invasive Ther Allied Technol; 2014 Dec; 23(6):333-40. PubMed ID: 25345417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a force-reflective master robot for haptic telesurgery applications: RoboMaster1.
    Hadavand M; Mirbagheri A; Salarieh H; Farahmand F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7037-40. PubMed ID: 22255959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telementoring and Telesurgery for Minimally Invasive Procedures.
    Hung AJ; Chen J; Shah A; Gill IS
    J Urol; 2018 Feb; 199(2):355-369. PubMed ID: 28655529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new telesurgical platform--preliminary clinical results.
    Stark M; Pomati S; D'Ambrosio A; Giraudi F; Gidaro S
    Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):31-6. PubMed ID: 25627435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Operation Support Robot with Sensory-Motor Feedback System for Neuroendovascular Intervention.
    Miyachi S; Nagano Y; Hironaka T; Kawaguchi R; Ohshima T; Matsuo N; Maejima R; Takayasu M
    World Neurosurg; 2019 Jul; 127():e617-e623. PubMed ID: 30930317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Force-Feedback Methodology for Teleoperated Suturing Task in Robotic-Assisted Minimally Invasive Surgery.
    Ehrampoosh A; Shirinzadeh B; Pinskier J; Smith J; Moshinsky R; Zhong Y
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part I. System description.
    Choi J; Park JW; Kim DJ; Shin J; Park CY; Lee JC; Jo YH
    Minim Invasive Ther Allied Technol; 2012 May; 21(3):188-94. PubMed ID: 21745135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector.
    Tavakoli M; Patel RV; Moallem M
    Int J Med Robot; 2005 Jan; 1(2):53-63. PubMed ID: 17518379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing robotic telesurgery with sensorless haptic feedback.
    Yilmaz N; Burkhart B; Deguet A; Kazanzides P; Tumerdem U
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1147-1155. PubMed ID: 38598140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion control skill assessment based on kinematic analysis of robotic end-effector movements.
    Liang K; Xing Y; Li J; Wang S; Li A; Li J
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-distance robotic telesurgery: a feasibility study for care in remote environments.
    Rayman R; Croome K; Galbraith N; McClure R; Morady R; Peterson S; Smith S; Subotic V; Van Wynsberghe A; Primak S
    Int J Med Robot; 2006 Sep; 2(3):216-24. PubMed ID: 17520635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.