BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25922070)

  • 1. Critical Roles of Two Hydrophobic Residues within Human Glucose Transporter 9 (hSLC2A9) in Substrate Selectivity and Urate Transport.
    Long W; Panwar P; Witkowska K; Wong K; O'Neill D; Chen XZ; Lemieux MJ; Cheeseman CI
    J Biol Chem; 2015 Jun; 290(24):15292-303. PubMed ID: 25922070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9).
    Long W; Panigrahi R; Panwar P; Wong K; O Neill D; Chen XZ; Lemieux MJ; Cheeseman CI
    Sci Rep; 2017 Jan; 7():41167. PubMed ID: 28117388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7).
    Manolescu A; Salas-Burgos AM; Fischbarg J; Cheeseman CI
    J Biol Chem; 2005 Dec; 280(52):42978-83. PubMed ID: 16186102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLC2A9 is a high-capacity urate transporter in humans.
    Caulfield MJ; Munroe PB; O'Neill D; Witkowska K; Charchar FJ; Doblado M; Evans S; Eyheramendy S; Onipinla A; Howard P; Shaw-Hawkins S; Dobson RJ; Wallace C; Newhouse SJ; Brown M; Connell JM; Dominiczak A; Farrall M; Lathrop GM; Samani NJ; Kumari M; Marmot M; Brunner E; Chambers J; Elliott P; Kooner J; Laan M; Org E; Veldre G; Viigimaa M; Cappuccio FP; Ji C; Iacone R; Strazzullo P; Moley KH; Cheeseman C
    PLoS Med; 2008 Oct; 5(10):e197. PubMed ID: 18842065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity.
    Manolescu AR; Augustin R; Moley K; Cheeseman C
    Mol Membr Biol; 2007; 24(5-6):455-63. PubMed ID: 17710649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of GLUT12/SLC2A12 as a urate transporter that regulates the blood urate level in hyperuricemia model mice.
    Toyoda Y; Takada T; Miyata H; Matsuo H; Kassai H; Nakao K; Nakatochi M; Kawamura Y; Shimizu S; Shinomiya N; Ichida K; Hosoyamada M; Aiba A; Suzuki H
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18175-18177. PubMed ID: 32690690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uric acid transport and disease.
    So A; Thorens B
    J Clin Invest; 2010 Jun; 120(6):1791-9. PubMed ID: 20516647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse GLUT9: evidences for a urate uniporter.
    Bibert S; Hess SK; Firsov D; Thorens B; Geering K; Horisberger JD; Bonny O
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F612-9. PubMed ID: 19587147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solute carrier family 2, member 9 and uric acid homeostasis.
    Cheeseman C
    Curr Opin Nephrol Hypertens; 2009 Sep; 18(5):428-32. PubMed ID: 19593129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses.
    Witkowska K; Smith KM; Yao SY; Ng AM; O'Neill D; Karpinski E; Young JD; Cheeseman CI
    Am J Physiol Renal Physiol; 2012 Aug; 303(4):F527-39. PubMed ID: 22647630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitative glucose transporter 9, a unique hexose and urate transporter.
    Doblado M; Moley KH
    Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E831-5. PubMed ID: 19797240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassessment of GLUT7 and GLUT9 as Putative Fructose and Glucose Transporters.
    Ebert K; Ludwig M; Geillinger KE; Schoberth GC; Essenwanger J; Stolz J; Daniel H; Witt H
    J Membr Biol; 2017 Apr; 250(2):171-182. PubMed ID: 28083649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system.
    Clémençon B; Lüscher BP; Fine M; Baumann MU; Surbek DV; Bonny O; Hediger MA
    PLoS One; 2014; 9(10):e108852. PubMed ID: 25286413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urate transport capacity of glucose transporter 9 and urate transporter 1 in cartilage chondrocytes.
    Zhang B; Duan M; Long B; Zhang B; Wang D; Zhang Y; Chen J; Huang X; Jiao Y; Zhu L; Zeng X
    Mol Med Rep; 2019 Aug; 20(2):1645-1654. PubMed ID: 31257523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent advances in urate metabolism].
    Mori G; Percudani R
    G Ital Nefrol; 2016 Malattie Metaboliche e Rene; 33(S68):. PubMed ID: 27960017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of mechanism underlying hypouricemic effect of glucosyl hesperidin.
    Ota-Kontani A; Hirata H; Ogura M; Tsuchiya Y; Harada-Shiba M
    Biochem Biophys Res Commun; 2020 Jan; 521(4):861-867. PubMed ID: 31711647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morin improves urate excretion and kidney function through regulation of renal organic ion transporters in hyperuricemic mice.
    Wang CP; Wang X; Zhang X; Shi YW; Liu L; Kong LD
    J Pharm Pharm Sci; 2010; 13(3):411-27. PubMed ID: 21092713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLC2A9--a fructose transporter identified as a novel uric acid transporter.
    Le MT; Shafiu M; Mu W; Johnson RJ
    Nephrol Dial Transplant; 2008 Sep; 23(9):2746-9. PubMed ID: 18606621
    [No Abstract]   [Full Text] [Related]  

  • 19. Urate transporters: an evolving field.
    Anzai N; Endou H
    Semin Nephrol; 2011 Sep; 31(5):400-9. PubMed ID: 22000646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances on uric acid transporters.
    Xu L; Shi Y; Zhuang S; Liu N
    Oncotarget; 2017 Nov; 8(59):100852-100862. PubMed ID: 29246027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.