These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25922487)

  • 1. Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads.
    Terrasson E; Darrasse A; Righetti K; Buitink J; Lalanne D; Ly Vu B; Pelletier S; Bolingue W; Jacques MA; Leprince O
    J Exp Bot; 2015 Jul; 66(13):3737-52. PubMed ID: 25922487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds.
    Verdier J; Lalanne D; Pelletier S; Torres-Jerez I; Righetti K; Bandyopadhyay K; Leprince O; Chatelain E; Vu BL; Gouzy J; Gamas P; Udvardi MK; Buitink J
    Plant Physiol; 2013 Oct; 163(2):757-74. PubMed ID: 23929721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance.
    Delahaie J; Hundertmark M; Bove J; Leprince O; Rogniaux H; Buitink J
    J Exp Bot; 2013 Nov; 64(14):4559-73. PubMed ID: 24043848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds.
    Buitink J; Leger JJ; Guisle I; Vu BL; Wuillème S; Lamirault G; Le Bars A; Le Meur N; Becker A; Küster H; Leprince O
    Plant J; 2006 Sep; 47(5):735-50. PubMed ID: 16923015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryo Localization Enhances the Survival of Acidovorax citrulli in Watermelon Seeds.
    Dutta B; Schneider RW; Robertson CL; Walcott RR
    Phytopathology; 2016 Apr; 106(4):330-8. PubMed ID: 26756827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis.
    Noguero M; Le Signor C; Vernoud V; Bandyopadhyay K; Sanchez M; Fu C; Torres-Jerez I; Wen J; Mysore KS; Gallardo K; Udvardi M; Thompson R; Verdier J
    Plant J; 2015 Feb; 81(3):453-66. PubMed ID: 25492260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of the plant pathogenic bacterium Xanthomonas campestris pv. Campestris in seed extracts of Brassica sp. Applying fluorescent antibodies and flow cytometry.
    Chitarra LG; Langerak CJ; Bergervoet JH; van den Bulk RW
    Cytometry; 2002 Feb; 47(2):118-26. PubMed ID: 11813202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling.
    Verdier J; Kakar K; Gallardo K; Le Signor C; Aubert G; Schlereth A; Town CD; Udvardi MK; Thompson RD
    Plant Mol Biol; 2008 Aug; 67(6):567-80. PubMed ID: 18528765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling.
    Repetto O; Rogniaux H; Firnhaber C; Zuber H; Küster H; Larré C; Thompson R; Gallardo K
    Plant J; 2008 Nov; 56(3):398-410. PubMed ID: 18643982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fortunella margarita transcriptional reprogramming triggered by Xanthomonas citri subsp. citri.
    Khalaf AA; Gmitter FG; Conesa A; Dopazo J; Moore GA
    BMC Plant Biol; 2011 Nov; 11():159. PubMed ID: 22078099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv malvacearum (ex smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and "var. fuscans" of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov.
    Schaad NW; Postnikova E; Lacy GH; Sechler A; Agarkova I; Stromberg PE; Stromberg VK; Vidaver AK
    Syst Appl Microbiol; 2005 Aug; 28(6):494-518. PubMed ID: 16104350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula.
    Zuber H; Poignavent G; Le Signor C; Aimé D; Vieren E; Tadla C; Lugan R; Belghazi M; Labas V; Santoni AL; Wipf D; Buitink J; Avice JC; Salon C; Gallardo K
    Plant J; 2013 Dec; 76(6):982-96. PubMed ID: 24118112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disinfection Efficacy of Electrohydraulic Discharge Plasma against
    Suwannarat S; Tephiruk N; Sunan S; Ruangwong K; Srisonphan S
    ACS Appl Bio Mater; 2024 Mar; 7(3):1469-1477. PubMed ID: 38231151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods.
    Firnhaber C; Pühler A; Küster H
    Planta; 2005 Oct; 222(2):269-83. PubMed ID: 15968508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From embryo sac to oil and protein bodies: embryo development in the model legume Medicago truncatula.
    Wang XD; Song Y; Sheahan MB; Garg ML; Rose RJ
    New Phytol; 2012 Jan; 193(2):327-38. PubMed ID: 21988647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The MtSNF4b subunit of the sucrose non-fermenting-related kinase complex connects after-ripening and constitutive defense responses in seeds of Medicago truncatula.
    Bolingue W; Rosnoblet C; Leprince O; Vu BL; Aubry C; Buitink J
    Plant J; 2010 Mar; 61(5):792-803. PubMed ID: 20015062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xanthomonas transcriptome inside cauliflower hydathodes reveals bacterial virulence strategies and physiological adaptations at early infection stages.
    Luneau JS; Cerutti A; Roux B; Carrère S; Jardinaud MF; Gaillac A; Gris C; Lauber E; Berthomé R; Arlat M; Boulanger A; Noël LD
    Mol Plant Pathol; 2022 Feb; 23(2):159-174. PubMed ID: 34837293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.
    Jun JH; Liu C; Xiao X; Dixon RA
    Plant Cell; 2015 Oct; 27(10):2860-79. PubMed ID: 26410301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula.
    Vu WT; Chang PL; Moriuchi KS; Friesen ML
    BMC Evol Biol; 2015 Apr; 15():59. PubMed ID: 25884157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission of plant-pathogenic bacteria by nonhost seeds without induction of an associated defense reaction at emergence.
    Darrasse A; Darsonval A; Boureau T; Brisset MN; Durand K; Jacques MA
    Appl Environ Microbiol; 2010 Oct; 76(20):6787-96. PubMed ID: 20729326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.