These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25922487)

  • 41. The HD-ZIP IV transcription factor GLABRA2 acts as an activator for proanthocyanidin biosynthesis in Medicago truncatula seed coat.
    Gu Z; Zhou X; Li S; Pang Y; Xu Y; Zhang X; Zhang J; Jiang H; Lu Z; Wang H; Han L; Bai S; Zhou C
    Plant J; 2024 Sep; 119(5):2303-2315. PubMed ID: 38990552
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways.
    Righetti K; Vu JL; Pelletier S; Vu BL; Glaab E; Lalanne D; Pasha A; Patel RV; Provart NJ; Verdier J; Leprince O; Buitink J
    Plant Cell; 2015 Oct; 27(10):2692-708. PubMed ID: 26410298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional regulation of early embryo development in the model legume Medicago truncatula.
    Kurdyukov S; Song Y; Sheahan MB; Rose RJ
    Plant Cell Rep; 2014 Feb; 33(2):349-62. PubMed ID: 24258241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Type III secretion system of Xanthomonas fuscans subsp. fuscans is involved in the phyllosphere colonization process and in transmission to seeds of susceptible beans.
    Darsonval A; Darrasse A; Meyer D; Demarty M; Durand K; Bureau C; Manceau C; Jacques MA
    Appl Environ Microbiol; 2008 May; 74(9):2669-78. PubMed ID: 18326683
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydropriming and Biopriming Improve
    Forti C; Shankar A; Singh A; Balestrazzi A; Prasad V; Macovei A
    Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32106615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Induction of distinct defense-associated protein patterns in Aphanomyces euteiches (Oomycota)-elicited and -inoculated Medicago truncatula cell-suspension cultures: a proteome and phosphoproteome approach.
    Trapphoff T; Beutner C; Niehaus K; Colditz F
    Mol Plant Microbe Interact; 2009 Apr; 22(4):421-36. PubMed ID: 19271957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula.
    Vailleau F; Sartorel E; Jardinaud MF; Chardon F; Genin S; Huguet T; Gentzbittel L; Petitprez M
    Mol Plant Microbe Interact; 2007 Feb; 20(2):159-67. PubMed ID: 17313167
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The immunity of Meiwa kumquat against Xanthomonas citri is associated with a known susceptibility gene induced by a transcription activator-like effector.
    Teper D; Xu J; Li J; Wang N
    PLoS Pathog; 2020 Sep; 16(9):e1008886. PubMed ID: 32931525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.
    Dutta B; Gitaitis R; Smith S; Langston D
    PLoS One; 2014; 9(6):e99215. PubMed ID: 24936863
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity.
    Chatelain E; Hundertmark M; Leprince O; Le Gall S; Satour P; Deligny-Penninck S; Rogniaux H; Buitink J
    Plant Cell Environ; 2012 Aug; 35(8):1440-55. PubMed ID: 22380487
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula.
    Pang Y; Peel GJ; Wright E; Wang Z; Dixon RA
    Plant Physiol; 2007 Nov; 145(3):601-15. PubMed ID: 17885080
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence.
    Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C
    Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions.
    Ferrarini A; De Stefano M; Baudouin E; Pucciariello C; Polverari A; Puppo A; Delledonne M
    Mol Plant Microbe Interact; 2008 Jun; 21(6):781-90. PubMed ID: 18624641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Global gene expression profiling during Medicago truncatula-Phymatotrichopsis omnivora interaction reveals a role for jasmonic acid, ethylene, and the flavonoid pathway in disease development.
    Uppalapati SR; Marek SM; Lee HK; Nakashima J; Tang Y; Sledge MK; Dixon RA; Mysore KS
    Mol Plant Microbe Interact; 2009 Jan; 22(1):7-17. PubMed ID: 19061398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling.
    Gao LL; Kamphuis LG; Kakar K; Edwards OR; Udvardi MK; Singh KB
    New Phytol; 2010 Jun; 186(4):980-994. PubMed ID: 20345634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Applying DNA affinity chromatography to specifically screen for sucrose-related DNA-binding transcriptional regulators of Xanthomonas campestris.
    Leßmeier L; Alkhateeb RS; Schulte F; Steffens T; Loka TP; Pühler A; Niehaus K; Vorhölter FJ
    J Biotechnol; 2016 Aug; 232():89-98. PubMed ID: 27060555
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Seed-Specific Regulator of Triterpene Saponin Biosynthesis in
    Ribeiro B; Lacchini E; Bicalho KU; Mertens J; Arendt P; Vanden Bossche R; Calegario G; Gryffroy L; Ceulemans E; Buitink J; Goossens A; Pollier J
    Plant Cell; 2020 Jun; 32(6):2020-2042. PubMed ID: 32303662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.
    Tesfaye M; Silverstein KA; Nallu S; Wang L; Botanga CJ; Gomez SK; Costa LM; Harrison MJ; Samac DA; Glazebrook J; Katagiri F; Gutierrez-Marcos JF; Vandenbosch KA
    PLoS One; 2013; 8(3):e58992. PubMed ID: 23527067
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-wide characterization of SPL family in Medicago truncatula reveals the novel roles of miR156/SPL module in spiky pod development.
    Wang H; Lu Z; Xu Y; Kong L; Shi J; Liu Y; Fu C; Wang X; Wang ZY; Zhou C; Han L
    BMC Genomics; 2019 Jul; 20(1):552. PubMed ID: 31277566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Infection of Ustilaginoidea virens intercepts rice seed formation but activates grain-filling-related genes.
    Fan J; Guo XY; Li L; Huang F; Sun WX; Li Y; Huang YY; Xu YJ; Shi J; Lei Y; Zheng AP; Wang WM
    J Integr Plant Biol; 2015 Jun; 57(6):577-90. PubMed ID: 25319482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.