These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25922489)

  • 1. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.
    Tavares EQ; De Souza AP; Buckeridge MS
    J Exp Bot; 2015 Jul; 66(14):4133-43. PubMed ID: 25922489
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Fan C; Feng S; Huang J; Wang Y; Wu L; Li X; Wang L; Tu Y; Xia T; Li J; Cai X; Peng L
    Biotechnol Biofuels; 2017; 10():221. PubMed ID: 28932262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.
    Wang Y; Fan C; Hu H; Li Y; Sun D; Wang Y; Peng L
    Biotechnol Adv; 2016; 34(5):997-1017. PubMed ID: 27269671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar.
    Fan C; Yu H; Qin S; Li Y; Alam A; Xu C; Fan D; Zhang Q; Wang Y; Zhu W; Peng L; Luo K
    Biotechnol Biofuels; 2020; 13():9. PubMed ID: 31988661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing the deconstruction of plant cell walls.
    McCann MC; Carpita NC
    Curr Opin Plant Biol; 2008 Jun; 11(3):314-20. PubMed ID: 18486537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How cell wall complexity influences saccharification efficiency in Miscanthus sinensis.
    De Souza AP; Alvim Kamei CL; Torres AF; Pattathil S; Hahn MG; Trindade LM; Buckeridge MS
    J Exp Bot; 2015 Jul; 66(14):4351-65. PubMed ID: 25908240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do plant cell walls have a code?
    Tavares EQ; Buckeridge MS
    Plant Sci; 2015 Dec; 241():286-94. PubMed ID: 26706079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass recalcitrance: engineering plants and enzymes for biofuels production.
    Himmel ME; Ding SY; Johnson DK; Adney WS; Nimlos MR; Brady JW; Foust TD
    Science; 2007 Feb; 315(5813):804-7. PubMed ID: 17289988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production.
    Peña-Castro JM; Del Moral S; Núñez-López L; Barrera-Figueroa BE; Amaya-Delgado L
    Biomed Res Int; 2017; 2017():7824076. PubMed ID: 28951875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharification in transgenic rice by near-infrared spectroscopy.
    Huang J; Li Y; Wang Y; Chen Y; Liu M; Wang Y; Zhang R; Zhou S; Li J; Tu Y; Hao B; Peng L; Xia T
    Biotechnol Biofuels; 2017; 10():294. PubMed ID: 29234462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property.
    McCann MC; Carpita NC
    J Exp Bot; 2015 Jul; 66(14):4109-18. PubMed ID: 26060266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.
    Li F; Zhang M; Guo K; Hu Z; Zhang R; Feng Y; Yi X; Zou W; Wang L; Wu C; Tian J; Lu T; Xie G; Peng L
    Plant Biotechnol J; 2015 May; 13(4):514-25. PubMed ID: 25418842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural paradigms of plant cell wall degradation.
    Wei H; Xu Q; Taylor LE; Baker JO; Tucker MP; Ding SY
    Curr Opin Biotechnol; 2009 Jun; 20(3):330-8. PubMed ID: 19523812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls.
    Vega-Sánchez ME; Loqué D; Lao J; Catena M; Verhertbruggen Y; Herter T; Yang F; Harholt J; Ebert B; Baidoo EE; Keasling JD; Scheller HV; Heazlewood JL; Ronald PC
    Plant Biotechnol J; 2015 Sep; 13(7):903-14. PubMed ID: 25586315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20228730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-wall carbohydrates and their modification as a resource for biofuels.
    Pauly M; Keegstra K
    Plant J; 2008 May; 54(4):559-68. PubMed ID: 18476863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties.
    Grisolia MJ; Peralta DA; Valdez HA; Barchiesi J; Gomez-Casati DF; Busi MV
    Plant Mol Biol; 2017 Jan; 93(1-2):121-135. PubMed ID: 27770231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.