These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25922801)

  • 1. Bayesian estimation of predator diet composition from fatty acids and stable isotopes.
    Neubauer P; Jensen OP
    PeerJ; 2015; 3():e920. PubMed ID: 25922801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data.
    Bromaghin JF; Budge SM; Thiemann GW; Rode KD
    Ecol Evol; 2017 Aug; 7(16):6103-6113. PubMed ID: 28861216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Reliability of Quantitative Fatty Acid Signature Analysis and Compound-Specific Isotope Analysis-Based Mixing Models for Trophic Studies.
    Prokopkin I; Makhutova O; Kravchuk E; Sushchik N; Anishchenko O; Gladyshev M
    Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary fat concentrations influence fatty acid assimilation patterns in Atlantic pollock (
    Budge SM; Townsend K; Lall SP; Bromaghin JF
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1804):20190649. PubMed ID: 32536304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating uncertainty and prior information into stable isotope mixing models.
    Moore JW; Semmens BX
    Ecol Lett; 2008 May; 11(5):470-80. PubMed ID: 18294213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EcoDiet: A hierarchical Bayesian model to combine stomach, biotracer, and literature data into diet matrix estimation.
    Hernvann PY; Gascuel D; Kopp D; Robert M; Rivot E
    Ecol Appl; 2022 Mar; 32(2):e2521. PubMed ID: 34918402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary use of stable isotopes and fatty acids for quantitative diet estimation of sympatric predators, the Antarctic pack-ice seals.
    Guerrero AI; Pinnock A; Negrete J; Rogers TL
    Oecologia; 2021 Nov; 197(3):729-742. PubMed ID: 34626270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating DNA-Based Prey Occurrence Probability into Stable Isotope Mixing Models.
    Hoenig BD; Trevelline BK; Latta SC; Porter BA
    Integr Comp Biol; 2022 Aug; 62(2):211-222. PubMed ID: 35679087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring repeatability of compositional diet estimates: An example using quantitative fatty acid signature analysis.
    Stewart C; Lang SLC; Iverson S; Bowen WD
    Ecol Evol; 2022 Oct; 12(10):e9428. PubMed ID: 36311408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Bayesian isotope mixing models: a response to Jackson et al. (2009).
    Semmens BX; Moore JW; Ward EJ
    Ecol Lett; 2009 Mar; 12(3):E6-8. PubMed ID: 19245585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Including source uncertainty and prior information in the analysis of stable isotope mixing models.
    Ward EJ; Semmens BX; Schindler DE
    Environ Sci Technol; 2010 Jun; 44(12):4645-50. PubMed ID: 20496928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable-isotope analysis reveals the importance of soft-bodied prey in the diet of lesser spotted dogfish Scyliorhinus canicula.
    Wieczorek AM; Power AM; Browne P; Graham CT
    J Fish Biol; 2018 Oct; 93(4):685-693. PubMed ID: 30069919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the application of quantitative fatty acid signature analysis in soil food webs: The effects of diet fat content.
    Kühn J; Henning V; Ruess L
    Ecol Evol; 2021 Aug; 11(16):11065-11076. PubMed ID: 34429903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Bayesian and numerical optimization-based diet estimation on herbivorous zooplankton.
    Litmanen JJ; Perälä TA; Taipale SJ
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1804):20190651. PubMed ID: 32536310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unifying error structures in commonly used biotracer mixing models.
    Stock BC; Semmens BX
    Ecology; 2016 Oct; 97(10):2562-2569. PubMed ID: 27859126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing mixing systems using a new generation of Bayesian tracer mixing models.
    Stock BC; Jackson AL; Ward EJ; Parnell AC; Phillips DL; Semmens BX
    PeerJ; 2018; 6():e5096. PubMed ID: 29942712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source partitioning using stable isotopes: coping with too much variation.
    Parnell AC; Inger R; Bearhop S; Jackson AL
    PLoS One; 2010 Mar; 5(3):e9672. PubMed ID: 20300637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of Bayesian hierarchical models to quantify individual diet specialization.
    Coblentz KE; Rosenblatt AE; Novak M
    Ecology; 2017 Jun; 98(6):1535-1547. PubMed ID: 28470993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying learning in biotracer studies.
    Brown CJ; Brett MT; Adame MF; Stewart-Koster B; Bunn SE
    Oecologia; 2018 Jul; 187(3):597-608. PubMed ID: 29651662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distance measures and optimization spaces in quantitative fatty acid signature analysis.
    Bromaghin JF; Rode KD; Budge SM; Thiemann GW
    Ecol Evol; 2015 Mar; 5(6):1249-62. PubMed ID: 25859330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.