BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25922898)

  • 1. Nonlinear rheology of glass-forming colloidal dispersions: transient stress-strain relations from anisotropic mode coupling theory and thermosensitive microgels.
    Amann CM; Siebenbürger M; Ballauff M; Fuchs M
    J Phys Condens Matter; 2015 May; 27(19):194121. PubMed ID: 25922898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
    Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hard discs under steady shear: comparison of Brownian dynamics simulations and mode coupling theory.
    Henrich O; Weysser F; Cates ME; Fuchs M
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1909):5033-50. PubMed ID: 19933126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow.
    Crassous JJ; Siebenbürger M; Ballauff M; Drechsler M; Hajnal D; Henrich O; Fuchs M
    J Chem Phys; 2008 May; 128(20):204902. PubMed ID: 18513043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode-coupling analysis of residual stresses in colloidal glasses.
    Fritschi S; Fuchs M; Voigtmann T
    Soft Matter; 2014 Jul; 10(27):4822-32. PubMed ID: 24841537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.
    Amann CP; Denisov D; Dang MT; Struth B; Schall P; Fuchs M
    J Chem Phys; 2015 Jul; 143(3):034505. PubMed ID: 26203034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow curves of dense colloidal dispersions: schematic model analysis of the shear-dependent viscosity near the colloidal glass transition.
    Fuchs M; Ballauff M
    J Chem Phys; 2005 Mar; 122(9):094707. PubMed ID: 15836162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid.
    Papenkort S; Voigtmann T
    J Chem Phys; 2015 Nov; 143(20):204502. PubMed ID: 26627963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Bauschinger effect in supercooled melts under shear: results from mode coupling theory and molecular dynamics simulations.
    Frahsa F; Bhattacharjee AK; Horbach J; Fuchs M; Voigtmann T
    J Chem Phys; 2013 Mar; 138(12):12A513. PubMed ID: 23556764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient dynamics in dense colloidal suspensions under shear: shear rate dependence.
    Laurati M; Mutch KJ; Koumakis N; Zausch J; Amann CP; Schofield AB; Petekidis G; Brady JF; Horbach J; Fuchs M; Egelhaaf SU
    J Phys Condens Matter; 2012 Nov; 24(46):464104. PubMed ID: 23114203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yield stress in amorphous solids: a mode-coupling-theory analysis.
    Ikeda A; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052305. PubMed ID: 24329262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology.
    Gnann MV; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow curves of colloidal dispersions close to the glass transition. Asymptotic scaling laws in a schematic model of mode coupling theory.
    Hajnal D; Fuchs M
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):125-38. PubMed ID: 18777045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal Plastic Crystals in a Shear Field.
    Chu F; Heptner N; Lu Y; Siebenbürger M; Lindner P; Dzubiella J; Ballauff M
    Langmuir; 2015 Jun; 31(22):5992-6000. PubMed ID: 25635343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.
    Weysser F; Puertas AM; Fuchs M; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic moduli of a Brownian colloidal glass former.
    Fritschi S; Fuchs M
    J Phys Condens Matter; 2018 Jan; 30(2):024003. PubMed ID: 29182519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence of the third harmonic stress response to oscillatory strain approaching the glass transition.
    Seyboldt R; Merger D; Coupette F; Siebenbürger M; Ballauff M; Wilhelm M; Fuchs M
    Soft Matter; 2016 Nov; 12(43):8825-8832. PubMed ID: 27752694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.