These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25922974)

  • 21. Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires.
    Conesa-Boj S; Li A; Koelling S; Brauns M; Ridderbos J; Nguyen TT; Verheijen MA; Koenraad PM; Zwanenburg FA; Bakkers EP
    Nano Lett; 2017 Apr; 17(4):2259-2264. PubMed ID: 28231017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mid-infrared photoluminescence revealing internal quantum efficiency enhancement of type-I and type-II InAs core/shell nanowires.
    Chen X; Alradhi H; Jin ZM; Zhu L; Sanchez AM; Ma S; Zhuang Q; Shao J
    Opt Lett; 2022 Oct; 47(19):5208-5211. PubMed ID: 36181223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurements of the Thermal Resistivity of InAlAs, InGaAs, and InAlAs/InGaAs Superlattices.
    Jaffe GR; Mei S; Boyle C; Kirch JD; Savage DE; Botez D; Mawst LJ; Knezevic I; Lagally MG; Eriksson MA
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11970-11975. PubMed ID: 30807087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radial modulation doping in core-shell nanowires.
    Dillen DC; Kim K; Liu ES; Tutuc E
    Nat Nanotechnol; 2014 Feb; 9(2):116-20. PubMed ID: 24441982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoluminescence polarization in strained GaN/AlGaN core/shell nanowires.
    Jacopin G; Rigutti L; Bellei S; Lavenus P; Julien FH; Davydov AV; Tsvetkov D; Bertness KA; Sanford NA; Schlager JB; Tchernycheva M
    Nanotechnology; 2012 Aug; 23(32):325701. PubMed ID: 22802219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement.
    Shin JC; Mohseni PK; Yu KJ; Tomasulo S; Montgomery KH; Lee ML; Rogers JA; Li X
    ACS Nano; 2012 Dec; 6(12):11074-9. PubMed ID: 23128184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bending and reverse bending during the fabrication of novel GaAs/(In,Ga)As/GaAs core-shell nanowires monitored by
    Al Hassan A; AlHumaidi M; Kalt J; Schneider R; Müller E; Anjum T; Khadiev A; Novikov DV; Pietsch U; Baumbach T
    Nanotechnology; 2024 May; 35(29):. PubMed ID: 38631325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ passivation of GaAsP nanowires.
    Himwas C; Collin S; Rale P; Chauvin N; Patriarche G; Oehler F; Julien FH; Travers L; Harmand JC; Tchernycheva M
    Nanotechnology; 2017 Dec; 28(49):495707. PubMed ID: 29057754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strain-Induced Band Gap Engineering in Selectively Grown GaN-(Al,Ga)N Core-Shell Nanowire Heterostructures.
    Hetzl M; Kraut M; Winnerl J; Francaviglia L; Döblinger M; Matich S; Fontcuberta I Morral A; Stutzmann M
    Nano Lett; 2016 Nov; 16(11):7098-7106. PubMed ID: 27766884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth and Electrical Characterization of Hybrid Core/Shell InAs/CdSe Nanowires.
    Kaladzhian M; von den Driesch N; Demarina N; Povstugar I; Zimmermann E; Jansen MM; Bae JH; Krause C; Bennemann B; Grützmacher D; Schäpers T; Pawlis A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):11035-11042. PubMed ID: 38377460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling Catalyst-Free Formation and Hole Gas Accumulation by Fabricating Si/Ge Core-Shell and Si/Ge/Si Core-Double Shell Nanowires.
    Zhang X; Jevasuwan W; Sugimoto Y; Fukata N
    ACS Nano; 2019 Nov; 13(11):13403-13412. PubMed ID: 31626528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In(x)Ga(1-x)As nanowire growth on graphene: van der Waals epitaxy induced phase segregation.
    Mohseni PK; Behnam A; Wood JD; English CD; Lyding JW; Pop E; Li X
    Nano Lett; 2013 Mar; 13(3):1153-61. PubMed ID: 23421807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and chemical evolution of the spontaneous core-shell structures of AlxGa1-xN/GaN nanowires.
    Fath Allah R; Ben T; González D
    Microsc Microanal; 2014 Aug; 20(4):1254-61. PubMed ID: 24698205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.
    Mankin MN; Day RW; Gao R; No YS; Kim SK; McClelland AA; Bell DC; Park HG; Lieber CM
    Nano Lett; 2015 Jul; 15(7):4776-82. PubMed ID: 26057208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum-Confinement-Enhanced Thermoelectric Properties in Modulation-Doped GaAs-AlGaAs Core-Shell Nanowires.
    Fust S; Faustmann A; Carrad DJ; Bissinger J; Loitsch B; Döblinger M; Becker J; Abstreiter G; Finley JJ; Koblmüller G
    Adv Mater; 2020 Jan; 32(4):e1905458. PubMed ID: 31814176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution-based II-VI core/shell nanowire heterostructures.
    Goebl JA; Black RW; Puthussery J; Giblin J; Kosel TH; Kuno M
    J Am Chem Soc; 2008 Nov; 130(44):14822-33. PubMed ID: 18847191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanopillar lasers directly grown on silicon with heterostructure surface passivation.
    Sun H; Ren F; Ng KW; Tran TT; Li K; Chang-Hasnain CJ
    ACS Nano; 2014 Jul; 8(7):6833-9. PubMed ID: 24892949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures.
    Zeng Y; Xing H; Fang Y; Huang Y; Lu A; Chen X
    Materials (Basel); 2014 Oct; 7(11):7276-7288. PubMed ID: 28788245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.
    Cao YY; Ouyang G; Wang CX; Yang GW
    Nano Lett; 2013 Feb; 13(2):436-43. PubMed ID: 23297740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The shell effect on the room temperature photoluminescence from ZnO/MgO core/shell nanowires: exciton-phonon coupling and strain.
    Vega NC; Marin O; Tosi E; Grinblat G; Mosquera E; Moreno MS; Tirado M; Comedi D
    Nanotechnology; 2017 Jul; 28(27):275702. PubMed ID: 28525395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.