BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25923019)

  • 1. Structure and Dynamics of GeoCyp: A Thermophilic Cyclophilin with a Novel Substrate Binding Mechanism That Functions Efficiently at Low Temperatures.
    Holliday MJ; Camilloni C; Armstrong GS; Isern NG; Zhang F; Vendruscolo M; Eisenmesser EZ
    Biochemistry; 2015 May; 54(20):3207-17. PubMed ID: 25923019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H, 13C, and 15N backbone and side chain resonance assignments of thermophilic Geobacillus kaustophilus cyclophilin-A.
    Holliday MJ; Zhang F; Isern NG; Armstrong GS; Eisenmesser EZ
    Biomol NMR Assign; 2014 Apr; 8(1):23-7. PubMed ID: 23138858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the Full Catalytic Cycle among Multiple Cyclophilin Family Members and Limitations on the Application of CPMG-RD in Reversible Catalytic Systems.
    Holliday MJ; Armstrong GS; Eisenmesser EZ
    Biochemistry; 2015 Sep; 54(38):5815-27. PubMed ID: 26335054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of loop dynamics in thermal stability of mesophilic and thermophilic adenylosuccinate synthetase: a molecular dynamics and normal mode analysis study.
    Vemparala S; Mehrotra S; Balaram H
    Biochim Biophys Acta; 2011 May; 1814(5):630-7. PubMed ID: 21440684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the thermophilic l-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability.
    Choi JM; Lee YJ; Cao TP; Shin SM; Park MK; Lee HS; di Luccio E; Kim SB; Lee SJ; Lee SJ; Lee SH; Lee DW
    Arch Biochem Biophys; 2016 Apr; 596():51-62. PubMed ID: 26946941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis.
    Yao XQ; Hamelberg D
    Acc Chem Res; 2019 Dec; 52(12):3455-3464. PubMed ID: 31793290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus.
    Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR
    Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved Conformational Dynamics Reveal a Key Dynamic Residue in the Gatekeeper Loop of Human Cyclophilins.
    Ahmed F; Yao XQ; Hamelberg D
    J Phys Chem B; 2023 Apr; 127(14):3139-3150. PubMed ID: 36989346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoform-specific inhibition of cyclophilins.
    Daum S; Schumann M; Mathea S; Aumüller T; Balsley MA; Constant SL; de Lacroix BF; Kruska F; Braun M; Schiene-Fischer C
    Biochemistry; 2009 Jul; 48(26):6268-77. PubMed ID: 19480458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties.
    Gur M; Blackburn EA; Ning J; Narayan V; Ball KL; Walkinshaw MD; Erman B
    J Chem Phys; 2018 Apr; 148(14):145101. PubMed ID: 29655319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR assignments of mitochondrial cyclophilin Cpr3 from Saccharomyces cerevisiae.
    Shukla VK; Singh JS; Trivedi D; Hosur RV; Kumar A
    Biomol NMR Assign; 2016 Apr; 10(1):203-6. PubMed ID: 26897529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclophilin A inhibition: targeting transition-state-bound enzyme conformations for structure-based drug design.
    Nagaraju M; McGowan LC; Hamelberg D
    J Chem Inf Model; 2013 Feb; 53(2):403-10. PubMed ID: 23312027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover.
    McGowan LC; Hamelberg D
    Biophys J; 2013 Jan; 104(1):216-26. PubMed ID: 23332074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.
    Lam SY; Yeung RC; Yu TH; Sze KH; Wong KB
    PLoS Biol; 2011 Mar; 9(3):e1001027. PubMed ID: 21423654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inserted Gly residue fine tunes dynamics between mesophilic and thermophilic ribonucleases H.
    Butterwick JA; Palmer AG
    Protein Sci; 2006 Dec; 15(12):2697-707. PubMed ID: 17088323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of human WD40 repeat-containing peptidylprolyl isomerase (PPWD1).
    Davis TL; Walker JR; Ouyang H; MacKenzie F; Butler-Cole C; Newman EM; Eisenmesser EZ; Dhe-Paganon S
    FEBS J; 2008 May; 275(9):2283-95. PubMed ID: 18397323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps.
    Jakob RP; Schmidpeter PA; Koch JR; Schmid FX; Maier T
    PLoS One; 2016; 11(6):e0157070. PubMed ID: 27276069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biophysical and biochemical characterization of a thermostable archaeal cyclophilin from Methanobrevibacter ruminantium.
    Kaushik V; Prasad S; Goel M
    Int J Biol Macromol; 2019 Oct; 139():139-152. PubMed ID: 31369788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative molecular dynamics study of thermophilic and mesophilic ribonuclease HI enzymes.
    Tang L; Liu H
    J Biomol Struct Dyn; 2007 Feb; 24(4):379-92. PubMed ID: 17206853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.