BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 25923312)

  • 1. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields.
    Malkemper EP; Eder SH; Begall S; Phillips JB; Winklhofer M; Hart V; Burda H
    Sci Rep; 2015 Apr; 4():9917. PubMed ID: 25923312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetoreception in birds: the effect of radio-frequency fields.
    Wiltschko R; Thalau P; Gehring D; Nießner C; Ritz T; Wiltschko W
    J R Soc Interface; 2015 Feb; 12(103):. PubMed ID: 25540238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radio frequency magnetic fields disrupt magnetoreception in American cockroach.
    Vácha M; Puzová T; Kvícalová M
    J Exp Biol; 2009 Nov; 212(Pt 21):3473-7. PubMed ID: 19837889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The magnetic compass mechanisms of birds and rodents are based on different physical principles.
    Thalau P; Ritz T; Burda H; Wegner RE; Wiltschko R
    J R Soc Interface; 2006 Aug; 3(9):583-7. PubMed ID: 16849254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus.
    Oliveriusová L; Němec P; Pavelková Z; Sedláček F
    Naturwissenschaften; 2014 Jul; 101(7):557-63. PubMed ID: 24913128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The magnetic orientation of the Antarctic amphipod Gondogeneia antarctica is cancelled by very weak radiofrequency fields.
    Tomanova K; Vacha M
    J Exp Biol; 2016 Jun; 219(Pt 11):1717-24. PubMed ID: 27026715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do honeybees use their magnetic compass? Can they see the North?
    Válková T; Vácha M
    Bull Entomol Res; 2012 Aug; 102(4):461-7. PubMed ID: 22313997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference?
    Oliveriusová L; Nĕmec P; Králová Z; Sedláček F
    J Exp Biol; 2012 Oct; 215(Pt 20):3649-54. PubMed ID: 22855619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of radio frequency fields on the radical pair magnetoreception model.
    Xu BM; Zou J; Li H; Li JG; Shao B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042711. PubMed ID: 25375527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental sources of radio frequency noise: potential impacts on magnetoreception.
    Granger J; Cummer SA; Lohmann KJ; Johnsen S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Jan; 208(1):83-95. PubMed ID: 35064368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field.
    Kavokin K; Chernetsov N; Pakhomov A; Bojarinova J; Kobylkov D; Namozov B
    J R Soc Interface; 2014 Aug; 11(97):20140451. PubMed ID: 24942848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and mice.
    Painter MS; Dommer DH; Altizer WW; Muheim R; Phillips JB
    J Exp Biol; 2013 Apr; 216(Pt 7):1307-16. PubMed ID: 23239891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The puzzle of magnetic resonance effect on the magnetic compass of migratory birds.
    Kavokin KV
    Bioelectromagnetics; 2009 Jul; 30(5):402-10. PubMed ID: 19291711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome.
    Nießner C; Winklhofer M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):499-507. PubMed ID: 28612234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eyes are essential for magnetoreception in a mammal.
    Caspar KR; Moldenhauer K; Moritz RE; Němec P; Malkemper EP; Begall S
    J R Soc Interface; 2020 Sep; 17(170):20200513. PubMed ID: 32993431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.
    Phillips JB; Youmans PW; Muheim R; Sloan KA; Landler L; Painter MS; Anderson CR
    PLoS One; 2013; 8(8):e73112. PubMed ID: 24023673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetoreception in laboratory mice: sensitivity to extremely low-frequency fields exceeds 33 nT at 30 Hz.
    Prato FS; Desjardins-Holmes D; Keenliside LD; DeMoor JM; Robertson JA; Thomas AW
    J R Soc Interface; 2013 Apr; 10(81):20121046. PubMed ID: 23365198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetoreception.
    Wiltschko R; Wiltschko W
    Adv Exp Med Biol; 2012; 739():126-41. PubMed ID: 22399399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human magnetic sense is mediated by a light and magnetic field resonance-dependent mechanism.
    Chae KS; Kim SC; Kwon HJ; Kim Y
    Sci Rep; 2022 May; 12(1):8997. PubMed ID: 35637212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields.
    Schwarze S; Schneider NL; Reichl T; Dreyer D; Lefeldt N; Engels S; Baker N; Hore PJ; Mouritsen H
    Front Behav Neurosci; 2016; 10():55. PubMed ID: 27047356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.