These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 25923511)

  • 21. Interfacial Rheology of Sterically Stabilized Colloids at Liquid Interfaces and Its Effect on the Stability of Pickering Emulsions.
    Hooghten RV; Blair VE; Vananroye A; Schofield AB; Vermant J; Thijssen JHJ
    Langmuir; 2017 May; 33(17):4107-4118. PubMed ID: 28414456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscoelasticity of non-colloidal hydrogel particle suspensions at the liquid-solid transition.
    Shewan HM; Yakubov GE; Bonilla MR; Stokes JR
    Soft Matter; 2021 May; 17(19):5073-5083. PubMed ID: 33929481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gelation of large hard particles with short-range attraction induced by bridging of small soft microgels.
    Luo J; Yuan G; Zhao C; Han CC; Chen J; Liu Y
    Soft Matter; 2015 Mar; 11(12):2494-503. PubMed ID: 25679297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect.
    Li Z; Richtering W; Ngai T
    Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On tuning microgel character and softness of cross-linked polystyrene particles.
    Schneider J; Wiemann M; Rabe A; Bartsch E
    Soft Matter; 2017 Jan; 13(2):445-457. PubMed ID: 27905616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glass transition and aging in dense suspensions of thermosensitive microgel particles.
    Purnomo EH; van den Ende D; Vanapalli SA; Mugele F
    Phys Rev Lett; 2008 Dec; 101(23):238301. PubMed ID: 19113599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the particle-surface interactions in aqueous solutions by soft microgel particles.
    Gong X; Hua L; Wei J; Ngai T
    Langmuir; 2014 Nov; 30(44):13182-90. PubMed ID: 25312378
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microstructure-driven self-assembly and rheological properties of multi-responsive soft microgel suspensions.
    Dieuzy E; Aguirre G; Auguste S; Chougrani K; Alard V; Billon L; Derail C
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):806-815. PubMed ID: 32814199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights into re-entrant melting of microgel particles by polymer-induced aggregation experiments.
    Schneider J; Werner M; Bartsch E
    Soft Matter; 2018 May; 14(19):3811-3817. PubMed ID: 29717726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of Confined Microgel Liquids: Weakened Spatial Confinement Effect by Microgel Particle Compliance.
    Seekell RP; Lin K; Zhu Y
    Langmuir; 2021 May; 37(17):5299-5305. PubMed ID: 33886325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shear thickening and jamming in densely packed suspensions of different particle shapes.
    Brown E; Zhang H; Forman NA; Maynor BW; Betts DE; DeSimone JM; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031408. PubMed ID: 22060372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic and hydrodynamic interaction in concentrated microgel suspensions: Hard or soft sphere behavior?
    Eckert T; Richtering W
    J Chem Phys; 2008 Sep; 129(12):124902. PubMed ID: 19045060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real and In Silico Microgels Show Comparable Bulk Moduli Below and Above the Volume Phase Transition.
    Höfken T; Gasser U; Schneider S; Petrunin AV; Scotti A
    Macromol Rapid Commun; 2024 Jul; 45(13):e2400043. PubMed ID: 38613338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems.
    Tan BH; Tam KC
    Adv Colloid Interface Sci; 2008 Jan; 136(1-2):25-44. PubMed ID: 17707760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The importance of the interfacial stabilising layer on the macroscopic flow properties of suspensions dispersed in non-adsorbing polymer solution.
    Faers MA
    Adv Colloid Interface Sci; 2003 Dec; 106():23-54. PubMed ID: 14672841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concentration dependence of the dynamics of microgel suspensions investigated by dynamic light scattering.
    Kureha T; Minato H; Suzuki D; Urayama K; Shibayama M
    Soft Matter; 2019 Jul; 15(27):5390-5399. PubMed ID: 31204747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic and biopolymeric microgels: Review of similarities and difference in behaviour in bulk phases and at interfaces.
    Akgonullu DZ; Murray BS; Connell SD; Fang Y; Linter B; Sarkar A
    Adv Colloid Interface Sci; 2023 Oct; 320():102983. PubMed ID: 37690329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discontinuous shear thickening in Brownian suspensions by dynamic simulation.
    Mari R; Seto R; Morris JF; Denn MM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.