These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25923672)

  • 1. Phylogenetic placement of metagenomic reads using the minimum evolution principle.
    Filipski A; Tamura K; Billing-Ross P; Murillo O; Kumar S
    BMC Genomics; 2015; 16 Suppl 1(Suppl 1):S13. PubMed ID: 25923672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SEPP: SATé-enabled phylogenetic placement.
    Mirarab S; Nguyen N; Warnow T
    Pac Symp Biocomput; 2012; ():247-58. PubMed ID: 22174280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LSHPlace: fast phylogenetic placement using locality-sensitive hashing.
    Brown DG; Truszkowski J
    Pac Symp Biocomput; 2013; ():310-9. PubMed ID: 23424136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree.
    Matsen FA; Kodner RB; Armbrust EV
    BMC Bioinformatics; 2010 Oct; 11():538. PubMed ID: 21034504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond classification: gene-family phylogenies from shotgun metagenomic reads enable accurate community analysis.
    Riesenfeld SJ; Pollard KS
    BMC Genomics; 2013 Jun; 14():419. PubMed ID: 23799973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood.
    Berger SA; Krompass D; Stamatakis A
    Syst Biol; 2011 May; 60(3):291-302. PubMed ID: 21436105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aligning short reads to reference alignments and trees.
    Berger SA; Stamatakis A
    Bioinformatics; 2011 Aug; 27(15):2068-75. PubMed ID: 21636595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used.
    Takahashi K; Nei M
    Mol Biol Evol; 2000 Aug; 17(8):1251-8. PubMed ID: 10908645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid heuristic algorithm for finding minimum evolution trees.
    Rodin A; Li WH
    Mol Phylogenet Evol; 2000 Aug; 16(2):173-9. PubMed ID: 10942605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid phylogenetic and functional classification of short genomic fragments with signature peptides.
    Berendzen J; Bruno WJ; Cohn JD; Hengartner NW; Kuske CR; McMahon BH; Wolinsky MA; Xie G
    BMC Res Notes; 2012 Aug; 5():460. PubMed ID: 22925230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TWARIT: an extremely rapid and efficient approach for phylogenetic classification of metagenomic sequences.
    Reddy RM; Mohammed MH; Mande SS
    Gene; 2012 Sep; 505(2):259-65. PubMed ID: 22710135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny-based classification of microbial communities.
    Tanaseichuk O; Borneman J; Jiang T
    Bioinformatics; 2014 Feb; 30(4):449-56. PubMed ID: 24369151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.
    Liu K; Warnow TJ; Holder MT; Nelesen SM; Yu J; Stamatakis AP; Linder CR
    Syst Biol; 2012 Jan; 61(1):90-106. PubMed ID: 22139466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny.
    Russo CA; Takezaki N; Nei M
    Mol Biol Evol; 1996 Mar; 13(3):525-36. PubMed ID: 8742641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New approaches to phylogenetic tree search and their application to large numbers of protein alignments.
    Whelan S
    Syst Biol; 2007 Oct; 56(5):727-40. PubMed ID: 17849327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data.
    Nei M; Tajima F; Tateno Y
    J Mol Evol; 1983; 19(2):153-70. PubMed ID: 6571220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AxML: a fast program for sequential and parallel phylogenetic tree calculations based on the maximum likelihood method.
    Stamatakis AP; Ludwig T; Meier H; Wolf MJ
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():21-8. PubMed ID: 15838120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliable estimation of tree branch lengths using deep neural networks.
    Suvorov A; Schrider DR
    PLoS Comput Biol; 2024 Aug; 20(8):e1012337. PubMed ID: 39102450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.