BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25923811)

  • 21. Zoo: Selecting Transcriptomic and Methylomic Biomarkers by Ensembling Animal-Inspired Swarm Intelligence Feature Selection Algorithms.
    Han Y; Huang L; Zhou F
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomarkers and proteomic analysis of osteoarthritis.
    Hsueh MF; Önnerfjord P; Kraus VB
    Matrix Biol; 2014 Oct; 39():56-66. PubMed ID: 25179675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine learning-based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease.
    Lee Y; Cappellato M; Di Camillo B
    Gigascience; 2022 Dec; 12():. PubMed ID: 37882604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Benchmarking feature selection and feature extraction methods to improve the performances of machine-learning algorithms for patient classification using metabolomics biomedical data.
    Labory J; Njomgue-Fotso E; Bottini S
    Comput Struct Biotechnol J; 2024 Dec; 23():1274-1287. PubMed ID: 38560281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of four-gene signature to diagnose osteoarthritis through bioinformatics and machine learning methods.
    Chen Z; Wang W; Zhang Y; Xue X; Hua Y
    Cytokine; 2023 Sep; 169():156300. PubMed ID: 37454542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Research progress of feature selection and machine learning methods for mass spectrometry-based protein biomarker discovery].
    Xu K; Han M; Huang C; Chang C; Zhu Y
    Sheng Wu Gong Cheng Xue Bao; 2019 Sep; 35(9):1619-1632. PubMed ID: 31559744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets.
    Gormley M; Dampier W; Ertel A; Karacali B; Tozeren A
    BMC Bioinformatics; 2007 Oct; 8():415. PubMed ID: 17963508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rough sets and Laplacian score based cost-sensitive feature selection.
    Yu S; Zhao H
    PLoS One; 2018; 13(6):e0197564. PubMed ID: 29912884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomarker selection and classification of "-omics" data using a two-step bayes classification framework.
    Assawamakin A; Prueksaaroon S; Kulawonganunchai S; Shaw PJ; Varavithya V; Ruangrajitpakorn T; Tongsima S
    Biomed Res Int; 2013; 2013():148014. PubMed ID: 24106694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RadWise: A Rank-Based Hybrid Feature Weighting and Selection Method for Proteomic Categorization of Chemoirradiation in Patients with Glioblastoma.
    Tasci E; Jagasia S; Zhuge Y; Sproull M; Cooley Zgela T; Mackey M; Camphausen K; Krauze AV
    Cancers (Basel); 2023 May; 15(10):. PubMed ID: 37345009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of integrated proteomics and transcriptomics signature of alcohol-associated liver disease using machine learning.
    Listopad S; Magnan C; Day LZ; Asghar A; Stolz A; Tayek JA; Liu ZX; Jacobs JM; Morgan TR; Norden-Krichmar TM
    PLOS Digit Health; 2024 Feb; 3(2):e0000447. PubMed ID: 38335183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of methods for classifying clinical samples based on proteomics data: a case study for statistical and machine learning approaches.
    Sampson DL; Parker TJ; Upton Z; Hurst CP
    PLoS One; 2011; 6(9):e24973. PubMed ID: 21969867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heuristic algorithms for feature selection under Bayesian models with block-diagonal covariance structure.
    Foroughi Pour A; Dalton LA
    BMC Bioinformatics; 2018 Mar; 19(Suppl 3):70. PubMed ID: 29589558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods.
    Chen JW; Dhahbi J
    Sci Rep; 2021 Jun; 11(1):13323. PubMed ID: 34172784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into therapeutic targets and biomarkers using integrated multi-'omics' approaches for dilated and ischemic cardiomyopathies.
    Kanapeckaitė A; Burokienė N
    Integr Biol (Camb); 2021 May; 13(5):121-137. PubMed ID: 33969404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology.
    Swan AL; Mobasheri A; Allaway D; Liddell S; Bacardit J
    OMICS; 2013 Dec; 17(12):595-610. PubMed ID: 24116388
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.