BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25923811)

  • 41. What did we learn from 'omics' studies in osteoarthritis.
    Ruiz-Romero C; Rego-Perez I; Blanco FJ
    Curr Opin Rheumatol; 2018 Jan; 30(1):114-120. PubMed ID: 29035928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Machine learning and feature selection for drug response prediction in precision oncology applications.
    Ali M; Aittokallio T
    Biophys Rev; 2019 Feb; 11(1):31-39. PubMed ID: 30097794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using feature selection and Bayesian network identify cancer subtypes based on proteomic data.
    Wang Y; Gao X; Ru X; Sun P; Wang J
    J Proteomics; 2023 May; 280():104895. PubMed ID: 37024076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Omics-CNN: A comprehensive pipeline for predictive analytics in quantitative omics using one-dimensional convolutional neural networks.
    Zompola A; Korfiati A; Theofilatos K; Mavroudi S
    Heliyon; 2023 Nov; 9(11):e21165. PubMed ID: 38027840
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A biomarker discovery of acute myocardial infarction using feature selection and machine learning.
    Mohd Faizal AS; Hon WY; Thevarajah TM; Khor SM; Chang SW
    Med Biol Eng Comput; 2023 Oct; 61(10):2527-2541. PubMed ID: 37199891
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of variable selection methods for random forests and omics data sets.
    Degenhardt F; Seifert S; Szymczak S
    Brief Bioinform; 2019 Mar; 20(2):492-503. PubMed ID: 29045534
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Machine Learning Modeling from Omics Data as Prospective Tool for Improvement of Inflammatory Bowel Disease Diagnosis and Clinical Classifications.
    Stankovic B; Kotur N; Nikcevic G; Gasic V; Zukic B; Pavlovic S
    Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573420
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using machine learning approaches for multi-omics data analysis: A review.
    Reel PS; Reel S; Pearson E; Trucco E; Jefferson E
    Biotechnol Adv; 2021; 49():107739. PubMed ID: 33794304
    [TBL] [Abstract][Full Text] [Related]  

  • 50. dRFEtools: dynamic recursive feature elimination for omics.
    Benjamin KJM; Katipalli T; Paquola ACM
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37632789
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robustness of chemometrics-based feature selection methods in early cancer detection and biomarker discovery.
    Lee HW; Lawton C; Na YJ; Yoon S
    Stat Appl Genet Mol Biol; 2013 Mar; 12(2):207-23. PubMed ID: 23502343
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diagnosis of T-cell-mediated kidney rejection by biopsy-based proteomic biomarkers and machine learning.
    Fang F; Liu P; Song L; Wagner P; Bartlett D; Ma L; Li X; Rahimian MA; Tseng G; Randhawa P; Xiao K
    Front Immunol; 2023; 14():1090373. PubMed ID: 36814924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methodology for biomarker discovery with reproducibility in microbiome data using machine learning.
    Rojas-Velazquez D; Kidwai S; Kraneveld AD; Tonda A; Oberski D; Garssen J; Lopez-Rincon A
    BMC Bioinformatics; 2024 Jan; 25(1):26. PubMed ID: 38225565
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Applications of proteomics in cartilage biology and osteoarthritis research.
    Williams A; Smith JR; Allaway D; Harris P; Liddell S; Mobasheri A
    Front Biosci (Landmark Ed); 2011 Jun; 16(7):2622-44. PubMed ID: 21622199
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How (Not) to Generate a Highly Predictive Biomarker Panel Using Machine Learning.
    Desaire H
    J Proteome Res; 2022 Sep; 21(9):2071-2074. PubMed ID: 36004690
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of candidate serum biomarkers of childhood-onset growth hormone deficiency using SWATH-MS and feature selection.
    Ortea I; Ruiz-Sánchez I; Cañete R; Caballero-Villarraso J; Cañete MD
    J Proteomics; 2018 Mar; 175():105-113. PubMed ID: 29317355
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stable feature selection based on the ensemble L
    Moon M; Nakai K
    BMC Genomics; 2016 Dec; 17(Suppl 13):1026. PubMed ID: 28155664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coupling bootstrap with synergy self-organizing map-based orthogonal partial least squares discriminant analysis: Stable metabolic biomarker selection for inherited metabolic diseases.
    Yang Q; Tian GL; Qin JW; Wu BQ; Tan L; Xu L; Wu SZ; Yang JT; Jiang JH; Yu RQ
    Talanta; 2020 Nov; 219():121370. PubMed ID: 32887087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics.
    Dezem FS; Marção M; Ben-Cheikh B; Nikulina N; Omotoso A; Burnett D; Coelho P; Hurley J; Gomez C; Phan-Everson T; Ong G; Martelotto L; Lewis ZR; George S; Braubach O; Malta TM; Plummer J
    BMC Genomics; 2023 Nov; 24(1):717. PubMed ID: 38017371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.