BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25923813)

  • 1. CHOgenome.org 2.0: Genome resources and website updates.
    Kremkow BG; Baik JY; MacDonald ML; Lee KH
    Biotechnol J; 2015 Jul; 10(7):931-8. PubMed ID: 25923813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chinese hamster genome database: an online resource for the CHO community at www.CHOgenome.org.
    Hammond S; Kaplarevic M; Borth N; Betenbaugh MJ; Lee KH
    Biotechnol Bioeng; 2012 Jun; 109(6):1353-6. PubMed ID: 22105744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHOmine: an integrated data warehouse for CHO systems biology and modeling.
    Gerstl MP; Hanscho M; Ruckerbauer DE; Zanghellini J; Borth N
    Database (Oxford); 2017 Jan; 2017():. PubMed ID: 28605771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives.
    Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H
    Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scaffold for the Chinese hamster genome.
    Wlaschin KF; Hu WS
    Biotechnol Bioeng; 2007 Oct; 98(2):429-39. PubMed ID: 17390381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards next generation CHO cell biology: Bioinformatics methods for RNA-Seq-based expression profiling.
    Monger C; Kelly PS; Gallagher C; Clynes M; Barron N; Clarke C
    Biotechnol J; 2015 Jul; 10(7):950-66. PubMed ID: 26058739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a public CHO cell line transcript database using versatile bioinformatics analysis pipelines.
    Rupp O; Becker J; Brinkrolf K; Timmermann C; Borth N; Pühler A; Noll T; Goesmann A
    PLoS One; 2014; 9(1):e85568. PubMed ID: 24427317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bioinformatics Pipeline for the Identification of CHO Cell Differential Gene Expression from RNA-Seq Data.
    Monger C; Motheramgari K; McSharry J; Barron N; Clarke C
    Methods Mol Biol; 2017; 1603():169-186. PubMed ID: 28493130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of transcribed PIWI-interacting RNAs from CHO RNAseq data.
    Gerstl MP; Hackl M; Graf AB; Borth N; Grillari J
    J Biotechnol; 2013 Jun; 166(1-2):51-7. PubMed ID: 23639388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.
    Gutierrez JM; Lewis NE
    Biotechnol J; 2015 Jul; 10(7):939-49. PubMed ID: 26099571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells.
    Kelly PS; Clarke C; Costello A; Monger C; Meiller J; Dhiman H; Borth N; Betenbaugh MJ; Clynes M; Barron N
    Metab Eng; 2017 May; 41():11-22. PubMed ID: 28188893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 'Omics Revolution in CHO Biology: Roadmap to Improved CHO Productivity.
    Dahodwala H; Sharfstein ST
    Methods Mol Biol; 2017; 1603():153-168. PubMed ID: 28493129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase-1 knockout.
    Laux H; Romand S; Nuciforo S; Farady CJ; Tapparel J; Buechmann-Moeller S; Sommer B; Oakeley EJ; Bodendorf U
    Biotechnol Bioeng; 2018 Oct; 115(10):2530-2540. PubMed ID: 29777593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CGCDB: a web-based resource for the investigation of gene coexpression in CHO cell culture.
    Clarke C; Doolan P; Barron N; Meleady P; Madden SF; DiNino D; Leonard M; Clynes M
    Biotechnol Bioeng; 2012 Jun; 109(6):1368-70. PubMed ID: 22189966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of transcription start sites in the Chinese hamster genome by next-generation RNA sequencing.
    Jakobi T; Brinkrolf K; Tauch A; Noll T; Stoye J; Pühler A; Goesmann A
    J Biotechnol; 2014 Nov; 190():64-75. PubMed ID: 25086342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization and evaluation of CHO-specific sequence databases for mass spectrometry based proteomics.
    Meleady P; Hoffrogge R; Henry M; Rupp O; Bort JH; Clarke C; Brinkrolf K; Kelly S; Müller B; Doolan P; Hackl M; Beckmann TF; Noll T; Grillari J; Barron N; Pühler A; Clynes M; Borth N
    Biotechnol Bioeng; 2012 Jun; 109(6):1386-94. PubMed ID: 22389098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An 'omics approach towards CHO cell engineering.
    Datta P; Linhardt RJ; Sharfstein ST
    Biotechnol Bioeng; 2013 May; 110(5):1255-71. PubMed ID: 23322664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo assembly and annotation of the CHOZN® GS
    Kretzmer C; Narasimhan RL; Lal RD; Balassi V; Ravellette J; Kotekar Manjunath AK; Koshy JJ; Viano M; Torre S; Zanda VM; Kumravat M; Saldanha KMR; Chandranpillai H; Nihad I; Zhong F; Sun Y; Gustin J; Borgschulte T; Liu J; Razafsky D
    Biotechnol Bioeng; 2022 Dec; 119(12):3632-3646. PubMed ID: 36073082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emerging CHO systems biology era: harnessing the 'omics revolution for biotechnology.
    Kildegaard HF; Baycin-Hizal D; Lewis NE; Betenbaugh MJ
    Curr Opin Biotechnol; 2013 Dec; 24(6):1102-7. PubMed ID: 23523260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of emerging sub-omics technologies for CHO cell engineering.
    Jerabek T; Keysberg C; Otte K
    Biotechnol Adv; 2022 Oct; 59():107978. PubMed ID: 35569699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.