These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25923906)

  • 1. Enhanced Ag(+) Ion Release from Aqueous Nanosilver Suspensions by Absorption of Ambient CO2.
    Fujiwara K; Sotiriou GA; Pratsinis SE
    Langmuir; 2015 May; 31(19):5284-90. PubMed ID: 25923906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the origin of released Ag+ ions from nanosilver.
    Sotiriou GA; Meyer A; Knijnenburg JT; Panke S; Pratsinis SE
    Langmuir; 2012 Nov; 28(45):15929-36. PubMed ID: 23072572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial activity of nanosilver ions and particles.
    Sotiriou GA; Pratsinis SE
    Environ Sci Technol; 2010 Jul; 44(14):5649-54. PubMed ID: 20583805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion release kinetics and particle persistence in aqueous nano-silver colloids.
    Liu J; Hurt RH
    Environ Sci Technol; 2010 Mar; 44(6):2169-75. PubMed ID: 20175529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing strength prevailing at root surface of plants promotes reduction of Ag+ and generation of Ag(0)/Ag2O nanoparticles exogenously in aqueous phase.
    Pardha-Saradhi P; Yamal G; Peddisetty T; Sharmila P; Nagar S; Singh J; Nagarajan R; Rao KS
    PLoS One; 2014; 9(9):e106715. PubMed ID: 25184239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of silver nanoparticles in macrophages.
    Pratsinis A; Hervella P; Leroux JC; Pratsinis SE; Sotiriou GA
    Small; 2013 Aug; 9(15):2576-84. PubMed ID: 23418027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles.
    Salvadori MR; Ando RA; Nascimento CAO; Corrêa B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Sep; 52(11):1112-1120. PubMed ID: 28763240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of graphene oxide-silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity.
    Naeem H; Ajmal M; Qureshi RB; Muntha ST; Farooq M; Siddiq M
    J Environ Manage; 2019 Jan; 230():199-211. PubMed ID: 30286349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ag/Ag2SO3 plasmonic catalysts with high activity and stability for CO2 reduction with water vapor under visible light.
    Wang D; Yu Y; Zhang Z; Fang H; Chen J; He Z; Song S
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18369-78. PubMed ID: 27282369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and mechanisms of nanosilver oxysulfidation.
    Liu J; Pennell KG; Hurt RH
    Environ Sci Technol; 2011 Sep; 45(17):7345-53. PubMed ID: 21770469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin.
    Fan W; Wu D; Tay FR; Ma T; Wu Y; Fan B
    Int J Nanomedicine; 2014; 9():5217-30. PubMed ID: 25419127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.
    Maurer EI; Sharma M; Schlager JJ; Hussain SM
    Nanotoxicology; 2014 Nov; 8(7):718-27. PubMed ID: 23848466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro antimicrobial and anticancer properties of TiO
    Bonan RF; Mota MF; da Costa Farias RM; da Silva SD; Bonan PRF; Diesel L; Menezes RR; da Cruz Perez DE
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109876. PubMed ID: 31500007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the formation of silver nanoparticles on silica by photochemical deposition and other means.
    Vinci JC; Bilski P; Kotek R; Chignell C
    Photochem Photobiol; 2010; 86(4):806-12. PubMed ID: 20331526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Ag and AgI quantum dots in AOT-stabilized water-in-CO2 microemulsions.
    Liu J; Raveendran P; Shervani Z; Ikushima Y; Hakuta Y
    Chemistry; 2005 Mar; 11(6):1854-60. PubMed ID: 15685712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity.
    Das MR; Sarma RK; Saikia R; Kale VS; Shelke MV; Sengupta P
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):16-22. PubMed ID: 21109409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area.
    Sotiriou GA; Teleki A; Camenzind A; Krumeich F; Meyer A; Panke S; Pratsinis SE
    Chem Eng J; 2011 Jun; 170(2-3):547-554. PubMed ID: 23730198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas.
    Hoheisel SM; Diamond S; Mount D
    Environ Toxicol Chem; 2012 Nov; 31(11):2557-63. PubMed ID: 22887018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.