These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25924225)

  • 1. A new route toward light emission from Ge: tensile-strained quantum dots.
    Chen Q; Song Y; Wang K; Yue L; Lu P; Li Y; Gong Q; Wang S
    Nanoscale; 2015 May; 7(19):8725-30. PubMed ID: 25924225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates.
    Chen Y; Li C; Lai H; Chen S
    Nanotechnology; 2010 Mar; 21(11):115207. PubMed ID: 20179329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneously-Grown Tunable Tensile Strained Germanium on Silicon for Photonic Devices.
    Clavel M; Saladukha D; Goley PS; Ochalski TJ; Murphy-Armando F; Bodnar RJ; Hudait MK
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26470-81. PubMed ID: 26561963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile-strained nanoscale Ge/In0.16Ga0.84As heterostructure for tunnel field-effect transistor.
    Zhu Y; Maurya D; Priya S; Hudait MK
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4947-53. PubMed ID: 24635912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Mid-Infrared Interband Emission from Tensile-Strained InGaAs Quantum Dots.
    Vallejo KD; Cabrera-Perdomo CI; Garrett TA; Drake MD; Liang B; Grossklaus KA; Simmonds PJ
    ACS Nano; 2023 Feb; 17(3):2318-2327. PubMed ID: 36649642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning quantum dot luminescence below the bulk band gap using tensile strain.
    Simmonds PJ; Yerino CD; Sun M; Liang B; Huffaker DL; Dorogan VG; Mazur Y; Salamo G; Lee ML
    ACS Nano; 2013 Jun; 7(6):5017-23. PubMed ID: 23701255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescence and photocurrent from InP nanowires with InAsP quantum dots grown on Si by molecular beam epitaxy.
    Kuyanov P; LaPierre RR
    Nanotechnology; 2015 Aug; 26(31):315202. PubMed ID: 26177614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells.
    Pizzi G; Virgilio M; Grosso G
    Nanotechnology; 2010 Feb; 21(5):055202. PubMed ID: 20023310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density and size control of InP/GaInP quantum dots on GaAs substrate grown by gas source molecular beam epitaxy.
    Rödel R; Bauer A; Kremling S; Reitzenstein S; Höfling S; Kamp M; Worschech L; Forchel A
    Nanotechnology; 2012 Jan; 23(1):015605. PubMed ID: 22156168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroluminescence from metal-insulator-semiconductor tunneling diodes using compressively strained Ge on Si0.5Ge0.5 virtual substrates.
    Manna S; Aluguri R; Das S; Singha R; Ray SK
    Opt Express; 2013 Nov; 21(23):28219-31. PubMed ID: 24514333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires.
    Zhu Z; Song Y; Chen Q; Zhang Z; Zhang L; Li Y; Wang S
    Nanoscale Res Lett; 2017 Dec; 12(1):472. PubMed ID: 28759987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films.
    Katiyar AK; Grimm A; Bar R; Schmidt J; Wietler T; Osten HJ; Ray SK
    Nanotechnology; 2016 Oct; 27(43):435204. PubMed ID: 27659285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ge/Al and Ge/Si
    Periša I; Tkalčević M; Isaković S; Basioli L; Ivanda M; Bernstorff S; Mičetić M
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate.
    Ma YJ; Zhong Z; Yang XJ; Fan YL; Jiang ZM
    Nanotechnology; 2013 Jan; 24(1):015304. PubMed ID: 23220787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensilely strained germanium nanomembranes as infrared optical gain media.
    Boztug C; Sánchez-Pérez JR; Sudradjat FF; Jacobson RB; Paskiewicz DM; Lagally MG; Paiella R
    Small; 2013 Feb; 9(4):622-30. PubMed ID: 23125175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation investigation of tensile strained GeSn fin photodetector with Si(3)N(4) liner stressor for extension of absorption wavelength.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Jan; 23(2):739-46. PubMed ID: 25835833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonthermal Plasma Synthesis of Core/Shell Quantum Dots: Strained Ge/Si Nanocrystals.
    Hunter KI; Held JT; Mkhoyan KA; Kortshagen UR
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8263-8270. PubMed ID: 28169525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman determination of uniformity of multilayer Si/Ge structures with Ge quantum dots.
    Talochkin AB; Cherkov AG
    Nanotechnology; 2009 Aug; 20(34):345702. PubMed ID: 19652280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strained germanium thin film membrane on silicon substrate for optoelectronics.
    Nam D; Sukhdeo D; Roy A; Balram K; Cheng SL; Huang KC; Yuan Z; Brongersma M; Nishi Y; Miller D; Saraswat K
    Opt Express; 2011 Dec; 19(27):25866-72. PubMed ID: 22274174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots.
    Gajjela RSR; Koenraad PM
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.