These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25924225)

  • 21. Raman resonance in the strained Ge quantum dot array.
    Talochkin AB; Markov VA
    Nanotechnology; 2008 Jul; 19(27):275402. PubMed ID: 21828706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of pulsed laser radiation on epitaxial self-assembled Ge quantum dots grown on Si substrates.
    del Pino AP; György E; Marcus IC; Roqueta J; Alonso MI
    Nanotechnology; 2011 Jul; 22(29):295304. PubMed ID: 21680960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Mar; 23(6):7924-32. PubMed ID: 25837129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoluminescence investigation of strictly ordered Ge dots grown on pit-patterned Si substrates.
    Brehm M; Grydlik M; Tayagaki T; Langer G; Schäffler F; Schmidt OG
    Nanotechnology; 2015 Jun; 26(22):225202. PubMed ID: 25969173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GaSb/GaAs type-II quantum dots grown by droplet epitaxy.
    Liang B; Lin A; Pavarelli N; Reyner C; Tatebayashi J; Nunna K; He J; Ochalski TJ; Huyet G; Huffaker DL
    Nanotechnology; 2009 Nov; 20(45):455604. PubMed ID: 19834245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission.
    Huang S; Lu W; Li C; Huang W; Lai H; Chen S
    Opt Express; 2013 Jan; 21(1):640-6. PubMed ID: 23388957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved quantum dot stacking for intermediate band solar cells using strain compensation.
    Simmonds PJ; Sun M; Laghumavarapu RB; Liang B; Norman AG; Luo JW; Huffaker DL
    Nanotechnology; 2014 Nov; 25(44):445402. PubMed ID: 25319397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots.
    Lim J; Park M; Bae WK; Lee D; Lee S; Lee C; Char K
    ACS Nano; 2013 Oct; 7(10):9019-26. PubMed ID: 24063589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.
    Shen J; Song Y; Lee ML; Cha JJ
    Nanotechnology; 2014 Nov; 25(46):465702. PubMed ID: 25354930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology and valence band offset of GaSb quantum dots grown on GaP(001) and their evolution upon capping.
    Desplanque L; Coinon C; Troadec D; Ruterana P; Patriarche G; Bonato L; Bimberg D; Wallart X
    Nanotechnology; 2017 Jun; 28(22):225601. PubMed ID: 28480873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical emission of a strained direct-band-gap Ge quantum well embedded inside InGaAs alloy layers.
    Pavarelli N; Ochalski TJ; Murphy-Armando F; Huo Y; Schmidt M; Huyet G; Harris JS
    Phys Rev Lett; 2013 Apr; 110(17):177404. PubMed ID: 23679775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short wavelength emission of AlGaInP quantum dots grown on GaP substrate.
    Gerhard S; Kremling S; Höfling S; Worschech L; Forchel A
    Nanotechnology; 2011 Oct; 22(41):415604. PubMed ID: 21918297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structural and optical properties of GaSb/InGaAs type-II quantum dots grown on InP (100) substrate.
    Shuhui Z; Lu W; Zhenwu S; Yanxiang C; Haitao T; Huaiju G; Haiqiang J; Wenxin W; Hong C; Liancheng Z
    Nanoscale Res Lett; 2012 Jan; 7(1):87. PubMed ID: 22277096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.
    Fan D; Li S; Kang N; Caroff P; Wang LB; Huang YQ; Deng MT; Yu CL; Xu HQ
    Nanoscale; 2015 Sep; 7(36):14822-8. PubMed ID: 26308470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thickness dependence of the strain, band gap and transport properties of epitaxial In2O3 thin films grown on Y-stabilised ZrO2(111).
    Zhang KH; Lazarov VK; Veal TD; Oropeza FE; McConville CF; Egdell RG; Walsh A
    J Phys Condens Matter; 2011 Aug; 23(33):334211. PubMed ID: 21813945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visible cathodoluminescence of quantum dot films by direct irradiation of electron beam and its materialization as a field emission device.
    Woo JY; Lee J; Lee H; Lee N; Oh JH; Do YR; Han CS
    Opt Express; 2013 May; 21(10):12519-26. PubMed ID: 23736470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tensilely Strained Ge Films on Si Substrates Created by Physical Vapor Deposition of Solid Sources.
    Li YS; Nguyen J
    Sci Rep; 2018 Nov; 8(1):16734. PubMed ID: 30425315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precisely ordered Ge quantum dots on a patterned Si microring for enhanced light-emission.
    Li Y; Cui C; Song J; Liu Q; Yuan S; Zeng C; Xia J
    Nanotechnology; 2020 Sep; 31(38):385603. PubMed ID: 32480391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [001] zone-axis bright-field diffraction contrast from coherent Ge(Si) islands on Si(001).
    Liao XZ; Zou J; Cockayne DJ; Matsumura S
    Ultramicroscopy; 2004 Jan; 98(2-4):239-47. PubMed ID: 15046804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.