BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 2592432)

  • 1. Characterization of neutral and cationic amino acid transport in Xenopus oocytes.
    Campa MJ; Kilberg MS
    J Cell Physiol; 1989 Dec; 141(3):645-52. PubMed ID: 2592432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutral amino acid transport in embryonal carcinoma cells.
    Zuzack JS; Tasca RJ; DiZio SM
    J Cell Physiol; 1985 Mar; 122(3):379-86. PubMed ID: 3968192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland.
    Tovar AR; Avila E; DeSantiago S; Torres N
    Metabolism; 2000 Jul; 49(7):873-9. PubMed ID: 10909998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1).
    Dowd LA; Coyle AJ; Rothstein JD; Pritchett DB; Robinson MB
    Mol Pharmacol; 1996 Mar; 49(3):465-73. PubMed ID: 8643086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamine transport in isolated epithelial intestinal cells. Identification of a Na+-dependent transport mechanism, highly specific for glutamine.
    del Castillo JR; Súlbaran-Carrasco MC; Burguillos L
    Pflugers Arch; 2002 Dec; 445(3):413-22. PubMed ID: 12466945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep.
    Thomas N; Tivey DR; Penno NM; Nattrass G; Hynd PI
    J Anim Sci; 2007 Sep; 85(9):2205-13. PubMed ID: 17504964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic Na(+)-independent amino acid transport in endotoxemic rats: evidence for selective stimulation of arginine transport.
    Inoue Y; Bode BP; Souba WW
    Shock; 1994 Sep; 2(3):164-72. PubMed ID: 7743345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA.
    Bertran J; Werner A; Stange G; Markovich D; Biber J; Testar X; Zorzano A; Palacin M; Murer H
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):717-23. PubMed ID: 1536650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a Na+-dependent neutral amino acid transporter, ASCT1, in rabbit corneal epithelial cell culture and rabbit cornea.
    Katragadda S; Talluri RS; Pal D; Mitra AK
    Curr Eye Res; 2005 Nov; 30(11):989-1002. PubMed ID: 16282133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alanine and leucine transport in unfertilized pig oocytes and early blastocysts.
    Prather RS; Peters MS; Van Winkle LJ
    Mol Reprod Dev; 1993 Mar; 34(3):250-4. PubMed ID: 8471246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-arginine transport at the fetal side of human placenta: effect of aspirin in pregnancy.
    Acevedo CG; Rojas S; Bravo I
    Exp Physiol; 1999 Nov; 84(6):1127-36. PubMed ID: 10564709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell density and amino acid transport in 3T3, SV3T3, and SV3T3 revertant cells.
    Borghetti AF; Piedimonte G; Tramacere M; Severini A; Ghiringhelli P; Guidotti GG
    J Cell Physiol; 1980 Oct; 105(1):39-49. PubMed ID: 7430266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IGF regulation of neutral amino acid transport in the BeWo choriocarcinoma cell line (b30 clone): evidence for MAP kinase-dependent and MAP kinase-independent mechanisms.
    Fang J; Mao D; Smith CH; Fant ME
    Growth Horm IGF Res; 2006; 16(5-6):318-25. PubMed ID: 17035059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Na(+)-dependent system A and ASC-independent amino acid transport system stimulated by glucagon in rat hepatocytes.
    Lim SK; Cynober L; De Bandt JP; Aussel C
    Cell Biol Int; 1999; 23(1):7-12. PubMed ID: 10527543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of system L and system y+ amino acid transport activity in cultured vascular smooth muscle cells.
    Low BC; Ross IK; Grigor MR
    J Cell Physiol; 1993 Sep; 156(3):626-34. PubMed ID: 8360265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional expression of the rabbit intestinal Na+/L-proline cotransporter (IMINO system) in Xenopus laevis oocytes.
    Urdaneta E; Barber A; Wright EM; Lostao MP
    J Physiol Biochem; 1998 Sep; 54(3):155-60. PubMed ID: 10217212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of glutamine in Xenopus laevis oocytes: relationship with transport of other amino acids.
    Taylor PM; Hundal HS; Rennie MJ
    J Membr Biol; 1989 Dec; 112(2):149-57. PubMed ID: 2621745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes.
    Bertran J; Magagnin S; Werner A; Markovich D; Biber J; Testar X; Zorzano A; Kühn LC; Palacin M; Murer H
    Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5606-10. PubMed ID: 1376926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of transport systems of L-tyrosine in mouse mammary gland: characterization of system T.
    Rekha ; Kansal VK
    Indian J Exp Biol; 1996 Aug; 34(8):750-7. PubMed ID: 8979480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The amino acid transport system y+L induced in Xenopus laevis oocytes by human choriocarcinoma cell (JAR) mRNA is functionally related to the heavy chain of the 4F2 cell surface antigen.
    Fei YJ; Prasad PD; Leibach FH; Ganapathy V
    Biochemistry; 1995 Jul; 34(27):8744-51. PubMed ID: 7612614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.