BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2592445)

  • 1. Retention of ciliary ninefold structure after removal of microtubules.
    Stephens RE; Oleszko-Szuts S; Linck RW
    J Cell Sci; 1989 Mar; 92 ( Pt 3)():391-402. PubMed ID: 2592445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective incorporation of architectural proteins into terminally differentiated molluscan gill cilia.
    Stephens RE
    J Exp Zool; 1996 Apr; 274(5):300-9. PubMed ID: 8618104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. At least one of the protofilaments in flagellar microtubules is not composed of tubulin.
    Nojima D; Linck RW; Egelman EH
    Curr Biol; 1995 Feb; 5(2):158-67. PubMed ID: 7743179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific localization of scallop gill epithelial calmodulin in cilia.
    Stommel EW; Stephens RE; Masure HR; Head JF
    J Cell Biol; 1982 Mar; 92(3):622-8. PubMed ID: 7085752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tektins are heterodimeric polymers in flagellar microtubules with axial periodicities matching the tubulin lattice.
    Pirner MA; Linck RW
    J Biol Chem; 1994 Dec; 269(50):31800-6. PubMed ID: 7527396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flagellar doublet microtubules: fractionation of minor components and alpha-tubulin from specific regions of the A-tubule.
    Linck RW
    J Cell Sci; 1976 Mar; 20(2):405-39. PubMed ID: 1262413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteins closely similar to flagellar tektins are detected in cilia but not in cytoplasmic microtubules.
    Amos WB; Amos LA; Linck RW
    Cell Motil; 1985; 5(3):239-49. PubMed ID: 3891093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tektins as structural determinants in basal bodies.
    Stephens RE; Lemieux NA
    Cell Motil Cytoskeleton; 1998; 40(4):379-92. PubMed ID: 9712267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Major membrane protein differences in cilia and flagella: evidence for a membrane-associated tubulin.
    Stephens RE
    Biochemistry; 1977 May; 16(10):2047-58. PubMed ID: 861196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments.
    Linck R; Fu X; Lin J; Ouch C; Schefter A; Steffen W; Warren P; Nicastro D
    J Biol Chem; 2014 Jun; 289(25):17427-44. PubMed ID: 24794867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubulin and tektin in sea urchin embryonic cilia: pathways of protein incorporation during turnover and regeneration.
    Stephens RE
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():683-92. PubMed ID: 8207090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantal tektin synthesis and ciliary length in sea-urchin embryos.
    Stephens RE
    J Cell Sci; 1989 Mar; 92 ( Pt 3)():403-13. PubMed ID: 2592446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential incorporation of tubulin into the junctional region of ciliary outer doublet microtubules: a model for treadmilling by lattice dislocation.
    Stephens RE
    Cell Motil Cytoskeleton; 2000 Oct; 47(2):130-40. PubMed ID: 11013393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms.
    Piperno G; Fuller MT
    J Cell Biol; 1985 Dec; 101(6):2085-94. PubMed ID: 2415535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of antibodies as probes for structural and biochemical studies of tektins from ciliary and flagellar microtubules.
    Linck RW; Goggin MJ; Norrander JM; Steffen W
    J Cell Sci; 1987 Nov; 88 ( Pt 4)():453-66. PubMed ID: 3332669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two proteins isolated from sea urchin sperm flagella: structural components common to the stable microtubules of axonemes and centrioles.
    Hinchcliffe EH; Linck RW
    J Cell Sci; 1998 Mar; 111 ( Pt 5)():585-95. PubMed ID: 9454732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turnover of tubulin in ciliary outer doublet microtubules.
    Stephens RE
    Cell Struct Funct; 1999 Oct; 24(5):413-8. PubMed ID: 15216899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding.
    Warner FD; Satir P
    J Cell Biol; 1974 Oct; 63(1):35-63. PubMed ID: 4424314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization of tektins from sperm flagellar doublet microtubules.
    Linck RW; Stephens RE
    J Cell Biol; 1987 Apr; 104(4):1069-75. PubMed ID: 3558479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equimolar heterodimers in microtubules.
    Stephens RE
    J Cell Biol; 1982 Aug; 94(2):263-70. PubMed ID: 7202008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.