BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25924561)

  • 1. Label-free water sensors using hybrid polymer-dielectric mid-infrared optical waveguides.
    Lin PT; Giammarco J; Borodinov N; Savchak M; Singh V; Kimerling LC; Tan DT; Richardson KA; Luzinov I; Agarwal A
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11189-94. PubMed ID: 25924561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides.
    Lin PT; Singh V; Hu J; Richardson K; Musgraves JD; Luzinov I; Hensley J; Kimerling LC; Agarwal A
    Lab Chip; 2013 Jun; 13(11):2161-6. PubMed ID: 23620303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors.
    Zhou J; Al Husseini D; Li J; Lin Z; Sukhishvili S; Coté GL; Gutierrez-Osuna R; Lin PT
    Sci Rep; 2022 Apr; 12(1):5572. PubMed ID: 35368033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time and Label-Free Chemical Sensor-on-a-chip using Monolithic Si-on-BaTiO
    Jin T; Li L; Zhang B; Lin HG; Wang H; Lin PT
    Sci Rep; 2017 Jul; 7(1):5836. PubMed ID: 28724901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolithically Integrated Si-on-AlN Mid-Infrared Photonic Chips for Real-Time and Label-Free Chemical Sensing.
    Jin T; Lin HG; Lin PT
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42905-42911. PubMed ID: 29171251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-infrared materials and devices on a Si platform for optical sensing.
    Singh V; Lin PT; Patel N; Lin H; Li L; Zou Y; Deng F; Ni C; Hu J; Giammarco J; Soliani AP; Zdyrko B; Luzinov I; Novak S; Novak J; Wachtel P; Danto S; Musgraves JD; Richardson K; Kimerling LC; Agarwal AM
    Sci Technol Adv Mater; 2014 Feb; 15(1):014603. PubMed ID: 27877641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy.
    Chen C; Mohr DA; Choi HK; Yoo D; Li M; Oh SH
    Nano Lett; 2018 Dec; 18(12):7601-7608. PubMed ID: 30216715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Mid-infrared Photonic Circuits for Real-time and Label-Free Hydroxyl Compound Detection.
    Jin T; Lin HG; Tiwald T; Lin PT
    Sci Rep; 2019 Mar; 9(1):4153. PubMed ID: 30858396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes.
    Tran NHT; Kim J; Phan TB; Khym S; Ju H
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31478-31487. PubMed ID: 28849907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated optical NIR-evanescent wave absorbance sensorfor chemical analysis.
    Bürck J; Zimmermann B; Mayer J; Ache HJ
    Anal Bioanal Chem; 1996 Jan; 354(3):284-90. PubMed ID: 15048449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing.
    Lin PT; Kwok SW; Lin HY; Singh V; Kimerling LC; Whitesides GM; Agarwal A
    Nano Lett; 2014 Jan; 14(1):231-8. PubMed ID: 24328355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InGaAs Membrane Waveguide: A Promising Platform for Monolithic Integrated Mid-Infrared Optical Gas Sensor.
    Yoo KM; Midkiff J; Rostamian A; Chung CJ; Dalir H; Chen RT
    ACS Sens; 2020 Mar; 5(3):861-869. PubMed ID: 32129061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers.
    Wang X; Kim SS; Rossbach R; Jetter M; Michler P; Mizaikoff B
    Analyst; 2012 May; 137(10):2322-7. PubMed ID: 22249166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury-cadmium-telluride waveguides--a novel strategy for on-chip mid-infrared sensors.
    Wang X; Antoszewski J; Putrino G; Lei W; Faraone L; Mizaikoff B
    Anal Chem; 2013 Nov; 85(22):10648-52. PubMed ID: 24160678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-infrared frequency doubling using strip-loaded silicon nitride on epitaxial barium titanate thin film waveguides.
    Zhou J; Liu M; Lu M; Lin PT
    Opt Lett; 2020 Dec; 45(23):6358-6361. PubMed ID: 33258811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of an integrated optical evanescent wave absorbance sensor for the determination of chlorinated hydrocarbons in water.
    Mayer J; Bürck J; Ache HJ
    Anal Bioanal Chem; 1996 Mar; 354(7-8):841-7. PubMed ID: 15048399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy.
    Xu J; Ren Z; Dong B; Liu X; Wang C; Tian Y; Lee C
    ACS Nano; 2020 Sep; 14(9):12159-12172. PubMed ID: 32812748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deflected Talbot-Mediated Overtone Spectroscopy in Near-Infrared as a Label-Free Sensor on a Chip.
    Katiyi A; Karabchevsky A
    ACS Sens; 2020 Jun; 5(6):1683-1688. PubMed ID: 32380827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach to the spectral simulation of infrared hollow waveguide gas sensors.
    Wilk A; Kim SS; Mizaikoff B
    Anal Bioanal Chem; 2009 Nov; 395(6):1661-71. PubMed ID: 19777219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities.
    Jin T; Zhou J; Wang Z; Gutierrez-Osuna R; Ahn C; Hwang W; Park K; Lin PT
    Anal Chem; 2018 Apr; 90(7):4348-4353. PubMed ID: 29509404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.