BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25924579)

  • 1. Structural views of quinone oxidoreductase from Mycobacterium tuberculosis reveal large conformational changes induced by the co-factor.
    Zheng Q; Song Y; Zhang W; Shaw N; Zhou W; Rao Z
    FEBS J; 2015 Jul; 282(14):2697-707. PubMed ID: 25924579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct oligomerization and NADPH binding modes observed between L. donovani and human quinone oxidoreductases.
    Vishwakarma C; Ansari A; Pratap JV
    Biochem Biophys Res Commun; 2024 Jan; 690():149096. PubMed ID: 37988924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insights into the NAD(P)H:Quinone Oxidoreductase from
    Yang C; Huang Z; Zhang X; Zhu C
    ACS Omega; 2022 Jul; 7(29):25705-25714. PubMed ID: 35910145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the cofactor-assisted substrate recognition of yeast quinone oxidoreductase Zta1.
    Guo PC; Ma XX; Bao ZZ; Ma JD; Chen Y; Zhou CZ
    J Struct Biol; 2011 Oct; 176(1):112-8. PubMed ID: 21820057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli.
    Kim IK; Yim HS; Kim MK; Kim DW; Kim YM; Cha SS; Kang SO
    J Mol Biol; 2008 May; 379(2):372-84. PubMed ID: 18455185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium tuberculosis type II NADH-menaquinone oxidoreductase catalyzes electron transfer through a two-site ping-pong mechanism and has two quinone-binding sites.
    Yano T; Rahimian M; Aneja KK; Schechter NM; Rubin H; Scott CP
    Biochemistry; 2014 Feb; 53(7):1179-90. PubMed ID: 24447297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of the quinone oxidoreductase from Thermus thermophilus HB8 and its complex with NADPH: implication for NADPH and substrate recognition.
    Shimomura Y; Kakuta Y; Fukuyama K
    J Bacteriol; 2003 Jul; 185(14):4211-8. PubMed ID: 12837796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) from Mycobacterium tuberculosis.
    Eniyan K; Dharavath S; Vijayan R; Bajpai U; Gourinath S
    Biochim Biophys Acta Proteins Proteom; 2018 Mar; 1866(3):397-406. PubMed ID: 29203374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of Pseudomonas syringae pv. tomato DC3000 quinone oxidoreductase and its complex with NADPH.
    Pan X; Zhang H; Gao Y; Li M; Chang W
    Biochem Biophys Res Commun; 2009 Dec; 390(3):597-602. PubMed ID: 19818736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of shikimate dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and substrate complexes: insights into the enzymatic mechanism.
    Bagautdinov B; Kunishima N
    J Mol Biol; 2007 Oct; 373(2):424-38. PubMed ID: 17825835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Type-II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction.
    Sena FV; Batista AP; Catarino T; Brito JA; Archer M; Viertler M; Madl T; Cabrita EJ; Pereira MM
    Mol Microbiol; 2015 Oct; 98(2):272-88. PubMed ID: 26172206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase from Mycobacterium tuberculosis in complex with NADP(+).
    Cherney LT; Cherney MM; Garen CR; Niu C; Moradian F; James MN
    J Mol Biol; 2007 Apr; 367(5):1357-69. PubMed ID: 17316682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a new member of the flavoprotein disulfide reductase family of enzymes from Mycobacterium tuberculosis.
    Argyrou A; Vetting MW; Blanchard JS
    J Biol Chem; 2004 Dec; 279(50):52694-702. PubMed ID: 15456792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of Escherichia coli YhdH, a putative quinone oxidoreductase.
    Sulzenbacher G; Roig-Zamboni V; Pagot F; Grisel S; Salomoni A; Valencia C; Campanacci V; Vincentelli R; Tegoni M; Eklund H; Cambillau C
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1855-62. PubMed ID: 15388933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Mycobacterium tuberculosis ketol-acid reductoisomerase at 1.0 Å resolution - a potential target for anti-tuberculosis drug discovery.
    Lv Y; Kandale A; Wun SJ; McGeary RP; Williams SJ; Kobe B; Sieber V; Schembri MA; Schenk G; Guddat LW
    FEBS J; 2016 Apr; 283(7):1184-96. PubMed ID: 26876563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans: insights into sulfidotrophic respiration and detoxification.
    Cherney MM; Zhang Y; Solomonson M; Weiner JH; James MN
    J Mol Biol; 2010 Apr; 398(2):292-305. PubMed ID: 20303979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of reduction of quinones by Trypanosoma congolense trypanothione reductase.
    Cenas NK; Arscott D; Williams CH; Blanchard JS
    Biochemistry; 1994 Mar; 33(9):2509-15. PubMed ID: 8117712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure and comparative functional analyses of a Mycobacterium aldo-keto reductase.
    Scoble J; McAlister AD; Fulton Z; Troy S; Byres E; Vivian JP; Brammananth R; Wilce MC; Le Nours J; Zaker-Tabrizi L; Coppel RL; Crellin PK; Rossjohn J; Beddoe T
    J Mol Biol; 2010 Apr; 398(1):26-39. PubMed ID: 20188740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.