BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 25924609)

  • 21. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.
    Guo X; Zhang T; Hu Z; Zhang Y; Shi Z; Wang Q; Cui Y; Wang F; Zhao H; Chen Y
    Development; 2014 Feb; 141(3):707-14. PubMed ID: 24401372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reporter gene knock-in into Marc-145 cells using CRISPR/Cas9-mediated homologous recombination.
    Chang Y; Shao J; Gao Y; Liu W; Gao Z; Hu Y; Chang H
    Biotechnol Lett; 2020 Aug; 42(8):1317-1325. PubMed ID: 32185620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning-free CRISPR.
    Arbab M; Srinivasan S; Hashimoto T; Geijsen N; Sherwood RI
    Stem Cell Reports; 2015 Nov; 5(5):908-917. PubMed ID: 26527385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility.
    Kherraf ZE; Conne B; Amiri-Yekta A; Kent MC; Coutton C; Escoffier J; Nef S; Arnoult C; Ray PF
    Mol Cell Endocrinol; 2018 Jun; 468():70-80. PubMed ID: 29522859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is mouse embryonic stem cell technology obsolete?
    Skarnes WC
    Genome Biol; 2015 May; 16(1):109. PubMed ID: 26013980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unexpected genomic rearrangements at targeted loci associated with CRISPR/Cas9-mediated knock-in.
    Rezza A; Jacquet C; Le Pillouer A; Lafarguette F; Ruptier C; Billandon M; Isnard Petit P; Trouttet S; Thiam K; Fraichard A; Chérifi Y
    Sci Rep; 2019 Mar; 9(1):3486. PubMed ID: 30837594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A possible aid in targeted insertion of large DNA elements by CRISPR/Cas in mouse zygotes.
    Nakao H; Harada T; Nakao K; Kiyonari H; Inoue K; Furuta Y; Aiba A
    Genesis; 2016 Feb; 54(2):65-77. PubMed ID: 26713866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.
    Nakamae K; Nishimura Y; Takenaga M; Nakade S; Sakamoto N; Ide H; Sakuma T; Yamamoto T
    Bioengineered; 2017 May; 8(3):302-308. PubMed ID: 28453368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of a CRISPR/Cas9-mediated Knock-in Strategy at the Porcine Rosa26 Locus in Porcine Foetal Fibroblasts.
    Xie Z; Pang D; Wang K; Li M; Guo N; Yuan H; Li J; Zou X; Jiao H; Ouyang H; Li Z; Tang X
    Sci Rep; 2017 Jun; 7(1):3036. PubMed ID: 28596588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells.
    Zhang C; He X; Kwok YK; Wang F; Xue J; Zhao H; Suen KW; Wang CC; Ren J; Chen GG; Lai PBS; Li J; Xia Y; Chan AM; Chan WY; Feng B
    BMC Biol; 2018 Dec; 16(1):151. PubMed ID: 30593266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.
    Auer TO; Del Bene F
    Methods; 2014 Sep; 69(2):142-50. PubMed ID: 24704174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of Knock-In Pigs Carrying Oct4-tdTomato Reporter through CRISPR/Cas9-Mediated Genome Engineering.
    Lai S; Wei S; Zhao B; Ouyang Z; Zhang Q; Fan N; Liu Z; Zhao Y; Yan Q; Zhou X; Li L; Xin J; Zeng Y; Lai L; Zou Q
    PLoS One; 2016; 11(1):e0146562. PubMed ID: 26756580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CLICK: one-step generation of conditional knockout mice.
    Miyasaka Y; Uno Y; Yoshimi K; Kunihiro Y; Yoshimura T; Tanaka T; Ishikubo H; Hiraoka Y; Takemoto N; Tanaka T; Ooguchi Y; Skehel P; Aida T; Takeda J; Mashimo T
    BMC Genomics; 2018 May; 19(1):318. PubMed ID: 29720086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous generation of multi-gene knockouts in human cells.
    Zhou Y; Zhang H; Wei W
    FEBS Lett; 2016 Dec; 590(23):4343-4353. PubMed ID: 27800615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scientists Journey Into Genomes Via CRISPR-Cas9.
    Ricks D
    J Natl Cancer Inst; 2015 Nov; 107(11):djv352. PubMed ID: 26538621
    [No Abstract]   [Full Text] [Related]  

  • 36. Generating stable cell lines with quantifiable protein production using CRISPR/Cas9-mediated knock-in.
    Lo CA; Greben AW; Chen BE
    Biotechniques; 2017 Apr; 62(4):165-174. PubMed ID: 28403807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pop in, pop out: a novel gene-targeting strategy for use with CRISPR-Cas9.
    Kühn R; Chu VT
    Genome Biol; 2015 Nov; 16():244. PubMed ID: 26553112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.
    Zhang H; Zhang J; Wei P; Zhang B; Gou F; Feng Z; Mao Y; Yang L; Zhang H; Xu N; Zhu JK
    Plant Biotechnol J; 2014 Aug; 12(6):797-807. PubMed ID: 24854982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.
    Bai M; Liang D; Wang Y; Li Q; Wu Y; Li J
    J Genet Genomics; 2016 May; 43(5):289-96. PubMed ID: 27210043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.