These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25924822)
1. Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Price DP; Schilkey FD; Ulanov A; Hansen IA Parasit Vectors; 2015 Apr; 8():252. PubMed ID: 25924822 [TBL] [Abstract][Full Text] [Related]
2. Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti. Shiao SH; Hansen IA; Zhu J; Sieglaff DH; Raikhel AS J Insect Physiol; 2008 Jan; 54(1):231-9. PubMed ID: 17981294 [TBL] [Abstract][Full Text] [Related]
3. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Telang A; Qayum AA; Parker A; Sacchetta BR; Byrnes GR Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201 [TBL] [Abstract][Full Text] [Related]
4. Food as a limiting factor for Aedes aegypti in water-storage containers. Arrivillaga J; Barrera R J Vector Ecol; 2004 Jun; 29(1):11-20. PubMed ID: 15266737 [TBL] [Abstract][Full Text] [Related]
5. Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes. Totten DC; Vuong M; Litvinova OV; Jinwal UK; Gulia-Nuss M; Harrell RA; Beneš H Insect Mol Biol; 2013 Feb; 22(1):18-30. PubMed ID: 23241066 [TBL] [Abstract][Full Text] [Related]
6. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Telang A; Frame L; Brown MR J Exp Biol; 2007 Mar; 210(Pt 5):854-64. PubMed ID: 17297145 [TBL] [Abstract][Full Text] [Related]
7. Transstadial metabolic priming mediated by larval nutrition in female Aedes albopictus mosquitoes. Dittmer J; Gabrieli P J Insect Physiol; 2020; 123():104053. PubMed ID: 32251651 [TBL] [Abstract][Full Text] [Related]
8. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Whyard S; Erdelyan CN; Partridge AL; Singh AD; Beebe NW; Capina R Parasit Vectors; 2015 Feb; 8():96. PubMed ID: 25880645 [TBL] [Abstract][Full Text] [Related]
9. Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Klepsatel P; Procházka E; Gáliková M Exp Gerontol; 2018 Sep; 110():298-308. PubMed ID: 29932967 [TBL] [Abstract][Full Text] [Related]
10. Improved accuracy of the transcriptional profiling method of age grading in Aedes aegypti mosquitoes under laboratory and semi-field cage conditions and in the presence of Wolbachia infection. Caragata EP; Poinsignon A; Moreira LA; Johnson PH; Leong YS; Ritchie SA; O'Neill SL; McGraw EA Insect Mol Biol; 2011 Apr; 20(2):215-24. PubMed ID: 21114562 [TBL] [Abstract][Full Text] [Related]
11. Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti mosquitoes. Zhou G; Flowers M; Friedrich K; Horton J; Pennington J; Wells MA J Insect Physiol; 2004 Apr; 50(4):337-49. PubMed ID: 15081827 [TBL] [Abstract][Full Text] [Related]
12. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. Leming MT; Rund SS; Behura SK; Duffield GE; O'Tousa JE BMC Genomics; 2014 Dec; 15(1):1128. PubMed ID: 25516260 [TBL] [Abstract][Full Text] [Related]
13. The influence of larval density, food stress, and parasitism on the bionomics of the dengue vector Aedes aegypti (Diptera: Culicidae): implications for integrated vector management. Mitchell-Foster K; Ma BO; Warsame-Ali S; Logan C; Rau ME; Lowenberger C J Vector Ecol; 2012 Jun; 37(1):221-9. PubMed ID: 22548557 [TBL] [Abstract][Full Text] [Related]
14. Dynamic expression of genes encoding subunits of inward rectifier potassium (Kir) channels in the yellow fever mosquito Aedes aegypti. Yang Z; Statler BM; Calkins TL; Alfaro E; Esquivel CJ; Rouhier MF; Denton JS; Piermarini PM Comp Biochem Physiol B Biochem Mol Biol; 2017 Feb; 204():35-44. PubMed ID: 27836744 [TBL] [Abstract][Full Text] [Related]
15. Structural changes in fat body of Aedes aegypti caused by aging and blood feeding. Martins GF; Pimenta PF J Med Entomol; 2008 Nov; 45(6):1102-7. PubMed ID: 19058635 [TBL] [Abstract][Full Text] [Related]
16. Serum composition of Aedes aegypti (Diptera: Culicidae) larvae and the production of an oviposition repellent are influenced by infection with the entomopathogenic digenean Plagiorchis elegans (Trematoda: Plagiorchiidae), starvation, and crowding. Zahiri N; Dunphy GB; Rau ME J Med Entomol; 1998 Mar; 35(2):162-8. PubMed ID: 9538578 [TBL] [Abstract][Full Text] [Related]
17. Nutritional Quality during Development Alters Insulin-Like Peptides' Expression and Physiology of the Adult Yellow Fever Mosquito, Pooraiiouby R; Sharma A; Beard J; Reyes J; Nuss A; Gulia-Nuss M Insects; 2018 Aug; 9(3):. PubMed ID: 30200185 [TBL] [Abstract][Full Text] [Related]
19. The type of blood used to feed Aedes aegypti females affects their cuticular and internal free fatty acid (FFA) profiles. Kaczmarek A; Wrońska AK; Boguś MI; Kazek M; Gliniewicz A; Mikulak E; Matławska M PLoS One; 2021; 16(4):e0251100. PubMed ID: 33930098 [TBL] [Abstract][Full Text] [Related]
20. Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti. Kim CH; Muturi EJ J Insect Physiol; 2013 Jun; 59(6):604-10. PubMed ID: 23562781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]