These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 25924854)
1. Solvent selection causes remarkable shifts of the "Ouzo region" for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Beck-Broichsitter M; Nicolas J; Couvreur P Nanoscale; 2015; 7(20):9215-21. PubMed ID: 25924854 [TBL] [Abstract][Full Text] [Related]
2. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Beck-Broichsitter M Int J Pharm; 2016 Sep; 511(1):262-266. PubMed ID: 27418569 [TBL] [Abstract][Full Text] [Related]
3. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the "ouzo region" upon drug loading. Beck-Broichsitter M; Rytting E; Lebhardt T; Wang X; Kissel T Eur J Pharm Sci; 2010 Oct; 41(2):244-53. PubMed ID: 20600881 [TBL] [Abstract][Full Text] [Related]
4. Small angle neutron scattering studies on the internal structure of poly(lactide-co-glycolide)-block-poly(ethylene glycol) nanoparticles as drug delivery vehicles. Yang B; Lowe JP; Schweins R; Edler KJ Biomacromolecules; 2015 Feb; 16(2):457-64. PubMed ID: 25539145 [TBL] [Abstract][Full Text] [Related]
5. Nanoparticles obtained by confined impinging jet mixer: poly(lactide-co-glycolide) vs. Poly-ε-caprolactone. Turino LN; Stella B; Dosio F; Luna JA; Barresi AA Drug Dev Ind Pharm; 2018 Jun; 44(6):934-941. PubMed ID: 29300113 [TBL] [Abstract][Full Text] [Related]
6. Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. Aschenbrenner E; Bley K; Koynov K; Makowski M; Kappl M; Landfester K; Weiss CK Langmuir; 2013 Jul; 29(28):8845-55. PubMed ID: 23777243 [TBL] [Abstract][Full Text] [Related]
7. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Aubry J; Ganachaud F; Cohen Addad JP; Cabane B Langmuir; 2009 Feb; 25(4):1970-9. PubMed ID: 19170510 [TBL] [Abstract][Full Text] [Related]
8. Non-aggregated protamine-coated poly(lactide-co-glycolide) nanoparticles of cisplatin crossed blood-brain barrier, enhanced drug delivery and improved therapeutic index in glioblastoma cells: in vitro studies. Dhami NK; Pandey RS; Jain UK; Chandra R; Madan J J Microencapsul; 2014; 31(7):685-93. PubMed ID: 24963955 [TBL] [Abstract][Full Text] [Related]
9. Stability of exenatide in poly(D,L-lactide-co-glycolide) solutions: a simplified investigation on the peptide degradation by the polymer. Liang R; Zhang R; Li X; Wang A; Chen D; Sun K; Liu W; Li Y Eur J Pharm Sci; 2013 Nov; 50(3-4):502-10. PubMed ID: 23994054 [TBL] [Abstract][Full Text] [Related]
10. Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices. Lepeltier E; Bourgaux C; Couvreur P Adv Drug Deliv Rev; 2014 May; 71():86-97. PubMed ID: 24384372 [TBL] [Abstract][Full Text] [Related]
11. Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: preparation and in vitro evaluation. Yang A; Yang L; Liu W; Li Z; Xu H; Yang X Int J Pharm; 2007 Feb; 331(1):123-32. PubMed ID: 17097246 [TBL] [Abstract][Full Text] [Related]
12. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Mohammadi G; Valizadeh H; Barzegar-Jalali M; Lotfipour F; Adibkia K; Milani M; Azhdarzadeh M; Kiafar F; Nokhodchi A Colloids Surf B Biointerfaces; 2010 Oct; 80(1):34-9. PubMed ID: 20558048 [TBL] [Abstract][Full Text] [Related]
13. pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Li Z; Qiu L; Chen Q; Hao T; Qiao M; Zhao H; Zhang J; Hu H; Zhao X; Chen D; Mei L Acta Biomater; 2015 Jan; 11():137-50. PubMed ID: 25242647 [TBL] [Abstract][Full Text] [Related]
14. Formulation and optimization of mitochondria-targeted polymeric nanoparticles. Marrache S; Pathak RK; Dhar S Methods Mol Biol; 2015; 1265():103-12. PubMed ID: 25634270 [TBL] [Abstract][Full Text] [Related]
15. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Legrand P; Lesieur S; Bochot A; Gref R; Raatjes W; Barratt G; Vauthier C Int J Pharm; 2007 Nov; 344(1-2):33-43. PubMed ID: 17616282 [TBL] [Abstract][Full Text] [Related]
16. In vitro photodynamic activity of chloro(5,10,15,20-tetraphenylporphyrinato)indium(III) loaded-poly(lactide-co-glycolide) nanoparticles in LNCaP prostate tumour cells. da Silva AR; Inada NM; Rettori D; Baratti MO; Vercesi AE; Jorge RA J Photochem Photobiol B; 2009 Feb; 94(2):101-12. PubMed ID: 19070504 [TBL] [Abstract][Full Text] [Related]
17. Protein functionalized tramadol-loaded PLGA nanoparticles: preparation, optimization, stability and pharmacodynamic studies. Lalani J; Rathi M; Lalan M; Misra A Drug Dev Ind Pharm; 2013 Jun; 39(6):854-64. PubMed ID: 22799442 [TBL] [Abstract][Full Text] [Related]
18. Morphological and degradation studies of sirolimus-containing poly(lactide-co-glycolide) discs. Ro AJ; Falotico R; Davé V J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):767-77. PubMed ID: 22121085 [TBL] [Abstract][Full Text] [Related]
19. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process. Kim MS; Song HS; Park HJ; Hwang SJ Chem Pharm Bull (Tokyo); 2012; 60(4):543-7. PubMed ID: 22466739 [TBL] [Abstract][Full Text] [Related]
20. Development and characterization of sub-micron poly(D,L-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles. Ngaboni Okassa L; Marchais H; Douziech-Eyrolles L; Cohen-Jonathan S; Soucé M; Dubois P; Chourpa I Int J Pharm; 2005 Sep; 302(1-2):187-96. PubMed ID: 16099119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]