These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25925104)

  • 41. Agricultural intensification drives changes in hybrid network robustness by modifying network structure.
    Morrison BML; Brosi BJ; Dirzo R
    Ecol Lett; 2020 Feb; 23(2):359-369. PubMed ID: 31814265
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Non-adaptive origins of evolutionary innovations increase network complexity in interacting digital organisms.
    Fortuna MA; Zaman L; Wagner A; Bascompte J
    Philos Trans R Soc Lond B Biol Sci; 2017 Dec; 372(1735):. PubMed ID: 29061902
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The disentangled bank: how loss of habitat fragments and disassembles ecological networks.
    Gonzalez A; Rayfield B; Lindo Z
    Am J Bot; 2011 Mar; 98(3):503-16. PubMed ID: 21613142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution.
    Lau MK; Keith AR; Borrett SR; Shuster SM; Whitham TG
    Ecology; 2016 Mar; 97(3):733-42. PubMed ID: 27197399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biology, methodology or chance? The degree distributions of bipartite ecological networks.
    Williams RJ
    PLoS One; 2011 Mar; 6(3):e17645. PubMed ID: 21390231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptive plasticity in activity modes and food web stability.
    Mougi A
    PLoS One; 2022; 17(4):e0267444. PubMed ID: 35446908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Foraging biology predicts food web complexity.
    Beckerman AP; Petchey OL; Warren PH
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13745-9. PubMed ID: 16954193
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The evolutionary and ecological consequences of animal social networks: emerging issues.
    Kurvers RH; Krause J; Croft DP; Wilson AD; Wolf M
    Trends Ecol Evol; 2014 Jun; 29(6):326-35. PubMed ID: 24792356
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Macro- and mesoscale pattern interdependencies in complex networks.
    Palazzi MJ; Borge-Holthoefer J; Tessone CJ; Solé-Ribalta A
    J R Soc Interface; 2019 Oct; 16(159):20190553. PubMed ID: 31662071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evolutionary conservation of species' roles in food webs.
    Stouffer DB; Sales-Pardo M; Sirer MI; Bascompte J
    Science; 2012 Mar; 335(6075):1489-92. PubMed ID: 22442483
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolutionary history and ecological processes shape a local multilevel antagonistic network.
    Elias M; Fontaine C; van Veen FJ
    Curr Biol; 2013 Jul; 23(14):1355-9. PubMed ID: 23791729
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nestedness across biological scales.
    Cantor M; Pires MM; Marquitti FM; Raimundo RL; Sebastián-González E; Coltri PP; Perez SI; Barneche DR; Brandt DY; Nunes K; Daura-Jorge FG; Floeter SR; Guimarães PR
    PLoS One; 2017; 12(2):e0171691. PubMed ID: 28166284
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Living in the branches: population dynamics and ecological processes in dendritic networks.
    Campbell Grant EH; Lowe WH; Fagan WF
    Ecol Lett; 2007 Feb; 10(2):165-75. PubMed ID: 17257104
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting rates of interspecific interaction from phylogenetic trees.
    Nuismer SL; Harmon LJ
    Ecol Lett; 2015 Jan; 18(1):17-27. PubMed ID: 25349102
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The patterns of organisation and structure of interactions in a fish-parasite network of a neotropical river.
    Bellay S; Oliveira EF; Almeida-Neto M; Abdallah VD; Azevedo RK; Takemoto RM; Luque JL
    Int J Parasitol; 2015 Jul; 45(8):549-57. PubMed ID: 25900213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of dynamics on ecological networks.
    Lewis HM; Law R
    J Theor Biol; 2007 Jul; 247(1):64-76. PubMed ID: 17416389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environmental weakening of trophic interactions drives stability in stochastic food webs.
    Ruokolainen L; McCann K
    J Theor Biol; 2013 Dec; 339():36-46. PubMed ID: 23999282
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Positive complexity-stability relations in food web models without foraging adaptation.
    Kartascheff B; Guill C; Drossel B
    J Theor Biol; 2009 Jul; 259(1):12-23. PubMed ID: 19318109
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simple model of bipartite cooperation for ecological and organizational networks.
    Saavedra S; Reed-Tsochas F; Uzzi B
    Nature; 2009 Jan; 457(7228):463-6. PubMed ID: 19052545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolutionary food web model based on body masses gives realistic networks with permanent species turnover.
    Allhoff KT; Ritterskamp D; Rall BC; Drossel B; Guill C
    Sci Rep; 2015 Jun; 5():10955. PubMed ID: 26042870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.